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Abstract

Setting o↵ an ongoing controversy, Lott and Mustard (1997) famously contended that so-

called shall-issue laws (SILs) deterred violent crime. In this controversy the weapon of choice

has been the di↵erences-in-di↵erences (DD) estimator applied to state and county panel data

spanning various intervals of time. By treating violent crime as a career choice, this paper

brings to bear a more general method, a cohort panel data model (CPDM) that incorporates the

fundamental dynamic insights regarding entering and exiting a career. Our model distinguishes

among three key parameters that jointly determine the e↵ect of SILs on crime, (i) a direct e↵ect

on entry decisions, (ii) a surprise e↵ect on exit decisions by individuals who entered criminal

careers prior to the passage of SILs, and (iii) a selection e↵ect on exit decisions by those who

entered in the presence of SILs. We find significant and time-invariant results that reject the

deterrence hypothesis as well as the DD model specification. Our results suggest that passages

of SILs contribute to about one third of total violent crimes in 2011, particularly through higher

turnover of violent criminals.
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1 Introduction

Shall-issue laws are state laws providing for the liberal issue of concealed gun permits analogous

to getting a drivers license. Setting o↵ a long controversy, Lott and Mustard (1997) (henceforth

LM) reasoned that SILs increase the probability that a given would-be perpetrator’s crime will fail

because he can no longer tell which prospective victim may carry a gun and respond with threats

or gun shots. In this controversy the weapon of choice has been the di↵erences-in-di↵erences (DD)

estimator applied to state and county panel data spanning various intervals of time. Researchers

have come to divergent conclusions spanning “more guns, less crime” to “more guns, more crime.”

Elementary dynamic analysis highlights the possibility of three di↵erent e↵ects of the introduc-

tion of SILs - one e↵ect on those already vested in a life of violent crime, another e↵ect on those

teetering between entering such a life and the alternatives and, thereafter, a selection e↵ect on the

exit of those who chose to enter in the presence of SILs. With panel data on individual potential

and actual violent criminals, an empirical specification to measure these e↵ects would be straight

forward. Unfortunately state (not individual) panels of crime rates for various types of violent

crimes constitute the best available data.

To date the research on the impact of SILs has ignored any forward-looking behaviors and

insights from analysis of the dynamics - insights such as the contemporaneous responses of exist-

ing violent criminals may di↵er between those who were hit with SILs after they became violent

criminals and those who selected into a life of violent crime despite the presence of SILs. Rather,

variations on a static DD approach have been employed, typically estimating one e↵ect of SILs for

each type of violent crime. We argue that DD estimators can be viewed as weighted sums of three

e↵ects where the weights depend on the shares of three corresponding sub-populations (potential

entrants, those who were hit with SILs after they became violent criminals, and those who selected

into a life of violent crime despite the presence of SILs). As the sub-populations change system-

atically as more time elapses since the passages of SILs, so will the DD estimates. Thus suppose

because the time series lengthens as the years roll by, an early investigator applies DD to a sample

period including the immediate aftermath of SILs but not a longer run and a later investigator

includes many time periods long after SILs passed. Then the DD estimate of the first will tend to

estimate a surprise e↵ect (muddied by a bit of a selection e↵ect mixed in) and the DD estimate

of the second investigator will weigh the selection e↵ect more heavily. And since these e↵ects bear

di↵erent magnitudes, the DD estimate produced by the second investigator will tend to be di↵erent

from the first investigator. This sensitivity of the DD estimate to the time span of the sample

period provides a setup for a long controversy!

This situation likely arose because there seemed to be no way to incorporate the basic insights

into panel data on crime aggregated to state (county, city) averages. In contrast, the CPDM

proposed here, while using data aggregated to the state level can, nonetheless, tease out the three

separate e↵ects dictated by almost any dynamic model. We attack the problem indirectly - first by

building a model of entry and exits from careers in violent crime and wrapping up all three e↵ects

in a net entry (= entry minus exits) equation. Under appropriate assumptions we link this to the
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observed changes in the number of crimes at the state level, a well-measured dependent variable. In

addition, we develop appropriate proxies for the relevant sub-populations of violent criminals. With

these in hand, we specify a Cohort Panel Data Model and provide maximum likelihood estimators

of the three di↵erent e↵ects of SILs on violent crime rates for all violent crimes as well as the four

components.

Assuming that violent crime is a career, we provide a staightforward dynamic interpretation of

what we term LM’s deterence hypothesis. Namely, SILs reduce the prospective value of a criminal

career and also the continuation value for existing criminals. This is su�cient to sign the three

e↵ects and we strongly reject this hypothesis. We show how the CPDM nests the standard DD

model thereby revealing exactly how the DD scuttles the basic implications from dynamics. Tests

resoundingly reject the restrictions that reduce the CPDM to a DD model.

Our paper is related to recent work that closely examine the empirical specifications of DD.

Bertrand, Duflo and Mullainathan (2004) (henceforth BDM) reviews a large set of DD papers and

points out the underestimated standard errors due to serially correlated outcomes. In this paper,

similar to Iyvarakul, McElroy and Staub (2011), we recognize that the point estimates are even

biased in the DD specification in a large subset of the papers reviewed in BDM due to heterogeneous

agents’ dynamic decision making. By applying the more general CPDM to the crime setting in this

paper, we show the wide application and robustness of CPDM in any setting that involves decision

making of forward-looking agents.

This paper also sheds light on the controversial literature on concealed carry weapons, where

almost all papers have employed variations of DD as their main statistical specification. LM was

the first to use a large panel data set and essentially a DD specification, exploiting the di↵erent

timing of state SIL passages, to rigorously study the e↵ects of SILs on violent crimes. Since then,

several papers have found the opposite, or facilitating e↵ects of guns on crimes (Ayres and Donohue,

2003b,a) (henceforth AD); some have found no e↵ects (Black and Nagin, 1998; Dezhbakhsh and

Rubin, 1998); while some others have confirmed LM’s findings (Plassmann and Tideman, 2001)1.

While most of these studies make use of the same crime and law passage data set and a DD

specification, they mainly di↵er in the lengths of their samples and various controls (time trends

and demographics) used. We show that after accounting for serially correlated error terms as

suggested by BDM, most of the results (those of both LM and AD) are rendered insignificant.

Furthermore, the estimates vary with the size of the sample, suggesting that the DD model is a

misspeci↵cation. In contrast, the CPDM yields significant results that are invariant to the lengths

of di↵erent sample periods (see Section 5.2).

This paper also fits in the broader literature on the economics of crimes. We construct a novel

proxy for age-specific violent crime rates to study entry and exit behaviors of individual violent

criminal cohorts. Similar to the economics of crimes and sociology literature (Hirschi and Gottfred-

son, 1983), we find consistent distributions of violent crimes across ages and further parameterized

an exit function of violent criminals by age. Our results suggest that the recent liberalizations

1Moody and Marvell (2008) presents a more thorough literature review of the debate on SILs.
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of gun laws, in addition to increasing overall violent crimes, also increased the turnover - both

entry and exit - of violent criminals, e↵ectively increasing the number of people with violent crime

records, while reducing the duration of their violent criminal careers on average. Higher turnover of

violent criminals has large social implications for criminal records, poverty, labor market outcomes,

and etc. These results are consistent with and complement the recent work on the reasons and

e↵ects of the prison boom in the U.S. (Neal and Rick, 2014; Johnson and Raphael, 2012)2.

Finally, our CPDM embeds a structural model of criminal discrete choices, extending Gary

Becker’s rational criminal framework (Becker, 1968) to the dynamic setting. Similar to the struc-

tural labor and crime literature (Wolpin, 1984; Imai and Krishna, 2004), we model individual

criminals as forward-looking agents with heterogeneous propensity to commit crimes who dynam-

ically optimize utility. However, while these papers estimate criminal behaviors with very special

samples of micro data (e.g. the Philadelphia Birth Cohort Study), we believe that state panel data

are more widely accessible to researchers and representative of general population and criminal

population to study the overall crime patterns. Instead of solving individual-level Bellman equa-

tions, we are also able to aggregate to the cohort, state and year level for the simple estimation

procedure that still captures average costs and benefits of entry and exit decisions.

The rest of the paper is organized as follows: Section 2 sets up the model, Section 3 introduces

data and descriptive evidence, Section 4 describes the empirical specification in detail, Section 5

presents results and Section 6 concludes.

2 Model

This section presents a spare model that captures the essential consequences of forward looking

behaviors on the part of potential and actual violent criminals in order to identify the di↵ering

e↵ects of SILs across three sub-populations as well as the total e↵ect. Treating violent crime as

an occupation lets us capture the e↵ects of SILs on entry into and exit from a career in violent

crime in a familiar way. Potential entrants are all those who are capable but not yet criminals;

potential exitors are all those who are currently violent criminals. To simplify the language, in this

paper, we refer to careers in violent crimes as “careers” and use violent criminals and criminals

interchangeably. We also refer to the potential entrants and exitors as the “entry cohort” and the

“exit cohort” even though it is not, strictly speaking, a cohort but a stage of life.

Assume the choice governing entry is captured by a value function and those governing exit

by a continuation function. The passage and presence of SILs a↵ect both. Begin with the entry

cohort. Let (s, t) denote state s in period t and let N

En = the number of potential entrants in

(s, t).Then a familiar, straightforward reduced-form representation of decisions to enter careers in

violent crime would be
2Johnson and Raphael (2012) also exploits the dynamics as an instrument to identify the e↵ects of changes in

incarceration rates on changes in crime rates with state panel data. We explicitly address the dynamic adjustments
of criminals as well as the heterogeneity among criminals with our CPDM.
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Entryst = (↵0 + ↵1I
SIL
st + ✏

En
st )NEn

st (1)

where I

SIL
st = 1 if SILs are in e↵ect, and ✏

En
st is a well-behaved random error to be discussed.

Parameters to be estimated are the base entry rate, ↵0, and the impact of SILs on entry, ↵1. Note

that the dependent variable Entryst is unobserved.

With forward looking behaviors, the contemporaneous e↵ects of SILs on exits from careers in

violent crime depend on whether this career was chosen before or after the passage of SILs. For

those whose entry was prior, the passage of a SIL induces a surprise change in the continuation

value of this career and consequently exit rates change by the surprise e↵ect, denoted by �2. In the

case that the advent of SILs causes continuation values to fall, the exit rates increase and �2 > 0,

and vice versa. Use N

Surprised
st to denote the size of the surprised cohort.

In contrast to the surprised cohort, those who chose their careers in violent crime after the

passage of SILs presumably capitalized the e↵ect of SILs on the value of a career in violent crime

when they selected into careers of violent crime. Use N

Selected
st to denote the size of this selected

cohort. For if the pool of potential entrants is heterogeneous in their “quality” (proclivity for

violent crime) the change in the value of the violent career path induced by SILs will a↵ect not

just the quantity of entrants as in Equation 1 but also their quality and, in turn, change their exit

rate down the road. This is captured by the selection e↵ect �1. In the case that the advent of

SILs decreases continuation values, the marginal and average violent criminal will have a higher

quality, be more bu↵ered from negative career shocks, and thus have a lower probability of exiting

or �1 < 0, and vice versa. These e↵ects are captured in the reduced form exit equations,

Exit

Selected
st =(�0 + �1I

SIL
st + ✏

Ex
st )NSelected

st (2)

Exit

Surprised
st =(�0 + �2I

SIL
st + ✏

Ex
st )NSurprised

st (3)

Thus, as shown below, in contrast to di↵-in-di↵ specifications, this enables the CPDM to explain

turning points in criminal activity and not just either upswings or downturns. Finally, subtracting

exits from entrances gives the net increase in criminals,

NetEntryst =(↵0 + ↵1I
SIL
st + ✏

En
st )NEn

st

�(�0 + �1I
SIL
st + ✏

Ex
st )NSelected

st

�(�0 + �2I
SIL
st + ✏

Ex
st )NSurprised

st

=(↵0 + ↵1I
SIL
st )NEn

st � (�0 + �1I
SIL
st )NSelected

st � (�0 + �2I
SIL
st )NSurprised

st + ✏st (4)

where the error ✏st = ✏

En
st N

En
st � ✏

Ex
st N

Selected
st � ✏

Ex
st N

Surprised
st is mean zero, heteroskedastic,

and can be written as �

2 =
h
(NEn

st )2⇡ + (NSelected
st )2 + (NSurprised

st )2
i
�

2
Ex, where ⇡ =

�2
En

�2
Ex

is a

parameter to be estimated. Should V ar(✏En
st ) = V ar(✏Ex

st ), then �

2 = V ar(✏En
st ) and the variance is
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homoskedastic.

Equation 4 is the basic model for the CPDM. Later in the empirical work, we investigate the

e↵ect of floodgate and aging e↵ects to this model. Our approach highlights the importance of

three separate e↵ects of SILs: ↵1 a direct e↵ect on entry of youths into violent criminal careers

and �1 the subsequent selection e↵ect on their exits; and �2 the surprise e↵ect on cohorts of older

criminals who began their careers prior to SILs. Further, these three parameters capture the two

fundamental implications of dynamic analysis. These are (i) the impact of SILs on behaviors are

not symmetric between potential entrants and exitors (youths in their entry windows and violent

criminals) - roughly, the ↵’s are not equal to the corresponding �’s; and (ii) the impact of SILs on

exits from violent criminal careers di↵ers between those who began their careers before the advent

of SILs and those who began after - �1 6= �2.

Given ideal panel data on individuals, we could observe entries and exits of potential and actual

criminals and form subsamples of criminals according to whether their entry preceeded or post-

dated the advent of SILs. Then the strategy would be to estimate each of these three separate

e↵ects - using something like di↵-in-di↵ - on the corresponding three sub-samples. In reality such

data are not on the visible horizon. Unlike other occupations, the pool of criminals as well as

their entries and exits go unobserved. The panel data we do have are aggregated to the state (or

county or city) level and, of course, do not parse out the criminal population, much less record

entry dates. Thus a three-separate-regression estimation strategy for state panel data that parallels

that for micro panel data is precluded. In particular, this strategy is precluded because the crime

rates (dependent variables) available are for the entire state population, not for the three key sub-

populations. The point of using the cohort panel data model is that, despite observing only the

impact of SILs on violent crimes aggregated to the state level, nonetheless the CPDM provides a

way to identify the three fundamental dynamic e↵ects of SILs - ↵1, �1, and �2.

2.1 Implications

It is worth pausing to create a sketch of the model as contained in Table 1. The first two blocks

in Table 1 show the contribution of each cohort (entry, selected and surprised) to the aggregate

net entry rate with the second and last columns giving these contributions before and after SILs,

respectively. In the third block of rows, weighting each row by its share and then subracting

exits from entries gives the net entry rate before and after SILs. NEx
st is the number of all potential

exitors. Finally weighting the second and last share-weighted column total net entries by (1�I

SIL
st )

and I

SIL
st gives the desired net entry rate for each (s, t) in the last block. Note that the expression

in the last block is the same with Equation 4.

We use this table to lay out, in turn, the evolution of the crime rate over time, the implications

of the deterence hypothesis, the nesting and testing di↵-in-di↵ specifications as special cases of the

CPDM.
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Table 1: E↵ects of SILs on Criminal Careers

Cohorts Before SIL After SIL
I

SIL
st = 0 I

SIL
st = 1

Entry

N

En
st ↵0 ↵0 + ↵1

Exit

N

Selected
st �0 �0 + �1

N

Surprised
st �0 �0 + �2

Net Entry

N

Ex
st = N

Selected
st +N

Surprised
st ↵0N

En
st � �0N

Ex
st (↵0 + ↵1)NEn

st � �0N
Ex
st

��1N
Selected
st � �2N

Surprised
st

↵0N
En
st + ↵1I

SIL
st N

En
st � �0N

Ex
st � �1I

SIL
st N

Selected
st � �2I

SIL
st N

Surprised
st

Notes: breakdown of the CPDM into entry and exit, before and after SIL. Multiplying cohort sizes in

column 1 with average e↵ects in columns 2 & 3 yields the respective contributions of each cohort to the

total e↵ect of SILs on criminal careers. Summing across rows then gives the total e↵ect, or equivalently,

our CPDM.

2.1.1 Evolutions of Criminal Cohorts

Under the CPDM, how would passages of SILs a↵ect crime rates? As Equation 4 and Table 1 show,

the obvious e↵ects are captured by ↵1, �1and �2 that a↵ect entry and exit of the corresponding

sub-populations. We turn to how the size and share of each sub-population evolve over time.

First set aside the entry cohort and presume it is exogenous (i.e., fertility is independent of

SILs). Divide the selected (NSelected
st ) and surprised (NSurprised

st ) cohorts by the total exit cohort

(NEx
st ) so they sum to one, s

⇤Selected
st + s

⇤Surprised
st = 1. Prior to SILs, crime evolves according

the pre-SIL entry and exit rates as they hit the associated entry and exit cohorts. Further, note

that as of the period when SILs become e↵ective (t⇤), essentially all criminals would have entered

before this. Thus in t

⇤ none of the stock of criminals were selected into crime under SILs so that

s

⇤Selected
st⇤ = 0 and thus s⇤Surprisedst⇤ = 1. This contrasts with the long run here defined as beginning

when the last survivor in the surprised cohort retires or exits (t⇤⇤) . By then the cohort shares have

reversed: s⇤Selectedst⇤ = 1 and s

⇤Surprised
st⇤ = 0 and they remain there going forward. Most importantly,

for t in between t

⇤ and t

⇤⇤, the shares evolve systematically with s

⇤Selected
st⇤ growing (approaching

1) at the expense of s⇤Surprisedst⇤ (approaching 0). These shares are the weights on the selection and

surprise e↵ects. Hence, the impact of these e↵ects on crime rates go from the surprise e↵ect (�2)

dominating in the immediate aftermath of the passage of SILs, then fading as these older criminals

exit and the fraction selected into crime grows until, in the long run, only the selection e↵ect of

SILs remains. These trends are summarized in Table 2.
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Table 2: Evolutions of Criminal Cohorts

Impacts on Before Passage At Passage After Passage
Criminal Cohorts Old Equilibrium Transition Years New Equilibrium

t < t

⇤
t = t

⇤
t

⇤
< t < t

⇤⇤
t � t

⇤⇤

s

⇤Surprised
st⇤ �2 0 �2 0 < s

⇤Surprised
st �2 < �2 0

s

⇤Selected
st⇤ �1 0 0 0 < s

⇤Selected
st �1 < �1 �1

Notes: exit cohort sizes and contributions to the total e↵ect over time. Cohorts are normalized by the total

exit cohort size N

Ex

st

.

2.1.2 The Deterrence Hypothesis

LM’s deterrence hypothesis has a natural interpretation in terms of the CPDM. Recall the channel

they envisioned was that in the presence of concealed guns born by law-abiding citizens, violent

criminals faced lower payo↵s in the form of increased risk from their intended victim because they

can no longer tell which victims are unarmed and which not. This translated into our CPDM

model as lowering the value of entering a career in violent crime and also lowering the continuation

value for those who are already criminals. Consequently, we interpret the deterrence hypothesis as

implying that SILs reduce entry via lowering the career value, i.e., ↵1 < 0. Also, thereafter, those

who select into crime are fewer in number but more hardcore than otherwise, i.e., �1 < 0. Finally,

and this likely gets closest to what LM had in mind: the advent of SILs is a negative surprise

for the continuation value for current criminlas and they exit at higher rates than otherwise, i.e.,

�2 > 0.

2.1.3 Nesting DD in CPDM

To show that the CPDM nests the basic DD we rerturn to the two basic insights from a dynamic

model of entry and exit into crime. These are (i) di↵erential impacts of SILs between potential

entrants and exitors (youths in their entry windows and violent criminals) - roughly, the ↵’s are

not equal to the corresponding �’s; and (ii) the impact of SILs on criminals’ exits by those who

began their careers before and after the advent of SIL are not equal, i.e., �1 6= �2. It is exactly the

denial of these insights that reduces the CPDM to the DD estimators.

Let us impose these in turn on the specification of the CPDM in Equation 4. First deny insight

(ii) by imposing the restriction that those who became criminals before and after the advent of SIL

exhibit the same contemporaneous responses to the presence of SILs, or �1 = �2 = �⇤, a common

value. In that case Equation 4 becomes

NetEntryst =(↵0 + ↵1I
SIL
st )NEn

st � (�0 + �⇤I
SIL
st )NEx

st + ✏st (5)

Then further deny insight (i) by imposing that the contemporaneous impact of SILs on the

crime rate is the same for potential entrants as for criminals, or ↵0 = ��0 and ↵1 = ��⇤. Equation

8



5 is reduced to

NetEntryst =↵0Nst + ↵1I
SIL
st Nst + ✏st (6)

where Nst = N

En
st +N

Ex
st is the total relevant population at risk to contribute to the net change

in the number of criminals. Equation 6 is then the familiar DD form and is, as everyone knows,

completely static.

3 Data and Descriptive Evidence

We draw from several sources of data in this paper in order to build up the cohorts in the CPDM

and to overcome data di�culties in traditional studies of crimes.

To construct the basic dependent variables (violent crimes), we follow the literature and obtain

data from the Uniform Crime Report (UCR) maintained by the Federal Bureau of Investigation

(FBI). The UCR data starts from 1977, as used in LM, but we focus on the period 1980-2011

due to other data constraints (BJS, see below). UCR reports violent crime and arrest rates at the

state-year level in five categories: (1) murder and nonnegligent manslaughter, (2) forcible rape, (3)

robbery, (4) aggravated assault, and (5) total violent crimes. Crime rates are used to construct

dependent variables in our empirical specification, while state-level arrest rates are proxies for state

police enforcement intensities, as is often used in the literature. Demographic control variables are

obtained through the Regional Economic Information System (REIS) of the Bureau of Economic

Analysis (BEA). These variables include real per capita personal income, income maintenance,

unemployment insurance, and retirement payment for people older than 65 on the state-year level

and are again broadly used in this literature to control for state-level income and welfare conditions

over time. Table 3 summarizes these crime and control variables.

We obtain single-age population estimates from the Census on the state-year level to construct

age-specific entry cohorts in our model. For more homogeneous e↵ects, we focus only on the male

population in this paper3.

There has also been controversy over the exact years of passage of SILs in several states in the

literature. We conduct our independent research in the SIL passage years in all states and show

them in Appendix B.1. Our coding of the passage years is aligned with AD and extends it 2011.

We plot in Figure 1 these SIL passages over time. The upward trended line over the three decades

suggests explosive increases in the number of SIL states from 5 to 41. By 2011, 41 states have

SILs in place and 36 of these were passed during our sample period 1980-2011. Many states have

been persuaded to adopt SILs by political lobbyists as well as strong academic influence (e.g. LM),

corroborating the importance to understand e↵ects of SILs. We also identify the causal e↵ects of

SILs by exploiting the variations in the timing of state adoptions.

3Violent crimes reported to be committed by females are far less than those by males and are likely to be di↵erent
in nature.
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Table 3: Main Sample Summary Statistics: 51 States, 1980-2011

Mean SD Min Max N
Crime Rates

(Crimes/100,000 pop.)

Violent 480.21 308.17 47.01 2921.80 1632
Murder 6.69 6.95 0.16 80.60 1632
Rape 35.08 13.42 7.30 102.18 1632

Robbery 145.30 151.26 6.40 1635.06 1632
Agg. Assault 293.13 171.62 31.32 1557.61 1632
Arrest Rates

(Arrests/100,000 pop.)

Violent 167.40 109.95 3.13 1313.82 1600
Murder 5.14 4.97 0 52.00 1599
Rape 10.41 6.48 0 92.49 1598

Robbery 35.98 44.75 0.16 1251.85 1597
Agg. Assault 116.06 74.70 2.78 656.23 1600

Control Variables

State Pop. (M) 5.24 5.83 0.41 37.69 1632
Pop. Density (pp/mile

2) 313.25 1191.56 0.62 9306.41 1632
Inc. Mainten. ($) 404.46 179.72 104.26 1282.19 1632
Income ($000s) 28.87 7.01 15.01 64.88 1632

Unemploy. Insur. ($) 142.92 103.09 18.86 780.47 1632
Retire. Pay. ($000s) 3.53 1.13 1.18 7.00 1632

Notes: Crime type definitions - murder and nonnegligent manslaughter is defined as the willful

(nonnegligent) killing of one human being by another; rape is defined as the carnal knowledge of a female

forcibly and against her will; robbery is defined as the taking or attempting to take anything of value from

the care, custody, or control of a person or persons by force or threat of force or violence and/or by putting

the victim in fear; aggravated assault is defined as an unlawful attack by one person upon another for the

purpose of inflicting severe or aggravated bodily injury.
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Figure 1: SIL Adoptions Trend
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Notes: Bars indicate the number of SIL passages in each year (right axis) and the line shows the total

number of SIL states so far (left axis).

It is well known that U.S. crime rates peaked shortly after 1990 and have been falling rather

smoothly ever since. Also, our CPDM with �2 < 0 and �1 > 0 can explain an upswing followed

by a downturn in the crime rate. This does not, nonetheless, make the CPDM a good candidate

for explaining the national peak in crimes in the early 1990’s. This can be seen in Figure 2. There

states are partitioned into five groups with the states within a group all adopting SILs about the

same time4. The first group of states adopted SILs prior to 1985 or have always had equivalent laws

as SIL and the last group includes states that adopted SILs in 2011 or never adopted SIL by 2011.

If the swings were all explained by the CPDM model, the peak crime rates for each group would all

occur some years after that group adopted SILs and Figure 2 would have a series of humps whose

max moves to the right as adoption years become more recent. But that is not the case. Instead,

Figure 2 shows that for all groups, crime rates peak around 1990. Thus the CPDM for SILs could

explain deviations from the overwhelming national peak in the early 1990’s. But it is an unlikely

candidate for explaing the huge national swing. On the other hand, it is important to control for

non-linear time trends in the empirical specification.

Importantly, the patterns in Figure 2 argue against the endogeneity of SILs. For example, the

group of states with the second lowest crime rate was the last group to pass SILs while the group

with the lowest crime rate was the earliest. In short Figure 2 gives no reason to suspect that high

(or low) crime rates cause states to pass SILs.

4See Figure 1 of Ayres and Donohue (2003b) for comparison. We follow them for this categorization but extend
it into a longer panel and finer groupings.
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Figure 2: Violent Crime Rates by SIL Passage Years
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To visualize the e↵ects of SILs on violent crimes estimated from a typical DD specification,

we compare average crime rates of the treated states vs. the non-treated states. The multiple

treatment dates (16 unique years for the 36 states that adopted SILs within our sample) make it

di�cult to present the treatment and control groups graphically using the standard multiple-event

DD as in Equation 6. We follow Gormley and Matsa (2011) here5 - define a 20-year window around

each treatment date t⇤ (normalizing t⇤ to zero), use all states who never adopted SILs within the

window as the control group and states that exactly adopted SIL in t⇤ as the treated group, and

call the two groups together a cohort. Then we average across cohorts for the overall treated and

control groups. The results are shown in Figure 3. In the top row, we plot the levels of crime rates

for each crime category, where solid lines are for the treated group and dashed lines for the control

group. We find only ambiguous evidence of the e↵ect of SILs - already showing evidence against

LM and AD. In particular, the declining crime rates (or in some cases, the “inverted-V” shape) of

the treated group cannot be used as evidence for the deterrence hypothesis in comparison to the

control group. In the second row, we plot the same for the changes (or net entry) in each crime

category. Visually, a small positive e↵ect of SILs can be detected in the treated group compared

with the control - the DD is able to capture the more nuanced e↵ect when specified on the changes,

while still leaving much dynamics to be explained.

The final data set we use is the national arrests by age groups data from the Bureau of Justice

5In the rest of the paper, we use the standard multiple-event DD as our DD specification for estimations but only
use the Gormley and Matsa (2011) procedure here for graphically comparing the treated and the control.
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Statistics (BJS). The BJS arrests data di↵ers from the UCR arrests data in that it reports arrest

rates on the age group-year level for each crime category. It covers the period 1980-2011 and

reports in 17 age groups: 9 or younger, 10-12, 13-14, 15, 16, 17, 18-20, 21-24, 25-29, 30-34, 35-39,

40-44, 45-49, 50-54, 55-59, 60-64, and 65 or older. Together with the UCR data, we then impute

age-specific arrest and crime rates, the lack of which is a traditional data problem in studies of

crimes, due to the nature of crime reporting (see Appendix B.2 for the imputation procedure).

4 Empirical Specification

In this section we turn back to the CPDM and bring it to the data. We lay out an empirical

strategy here to construct the relevant cohorts and to estimate the CPDM parameters.

Recall our CPDM in Equation 4 and Table 1 - unfortunatley we do not observe the dependent

variable in Equation 4. The link between the unobserved number of new criminals and the observed

net increase in crimes is ast = crimes
criminals . Multiplying Equation 4 through by ast converts the

criminals dependent variable to the change in crime rate. Ideally, we would know both components

of the change in crime rates, ast and �criminalsst. But given the impracticality of a large

representative panel on the number of criminals, this seems, at best, beyond the visible horizon.

The simplest practical assumption is that  is constant across all criminals. In that case, multiplying

through Equation 4 by  converts the dependent variable to the observe change in the crime rate

and changes the interpretation of the coe�cients. Thus, the parameters to be estimated become

↵

0
i = ↵i in place of ↵i and �

0
i = �i in place of �i. Thus, ↵

0
0 the baseline new crimes/year

attributed to the entry cohort, ↵0
1 the change in these crimes due to SILs, and so forth. Note that

the percent increase in entry rate due to SILs is identified as ↵1�↵0
↵0

=
↵0
1�↵0

0
↵0
0

because the ’s cancel

and the analogous result holds for �1 and �2.

In an abuse of notation we re-use the ↵’s and �’s and write the basic CPDM for crime rates as

NetEntryst = ↵0N
En
st + ↵1I

SIL
st N

En
st � �0N

Ex
st � �1I

SIL
st N

Selected
st � �2I

SIL
st N

Surprised
st (7)

The model above assumes that ast =
crimes

criminals is constant for all criminals at all ages and in

every (s, t). We have nothing to add to the usual discussions of holding such parameters constant

every s, but need to deal with the obvious fact that intensity  varies across ages and in response to

SILs. Our dependent variable is the time-di↵erenced rate, NumberOfCrimes
Population . In turn the number of

crimes is the number of criminals times the average crimes
criminals . Data limitations preclude parsing out

changes in this intensity between changes in the components. If data permitted, we could pursue a

more complex model that distinguished, for example, the e↵ects of SILs on the numbers of entrants

and their average intensity . But, it is not hard to see that such a dynamic model would predict

that either both e↵ects are positive or both e↵ects are negative and our entry parameter ↵1 measures

the combination of these two. Hence, although we refer to “entries and exits of criminals,” a more

accurate descriptor would be “increases and decreases in the crime level.” We prefer, however,
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“entries and exits” because it constantly reminds us of the dynamic decision making underpining

our model.

In constructing the cohorts, the entry cohorts are ideally composed of all capable (reasonable

ages, discussed below) males that are not violent criminals6 already. Since the number of violent

criminals at a time in a state is unobservable to us and is relatively small compared to the to-

tal population (violent crimes / total population are 0.48% on average), we simply use the male

populations as the entry cohorts. Exit cohorts, on the other hand, are even harder to construct.

Criminal populations are obviously unobservable. Much of the crime literature su↵er from this

unavoidable data di�culty and in this paper we try to remedy it using proxies. Older males’ popu-

lation is a potential candidate to proxy for the exit cohorts but it lacks correlation with the actual

criminal cohorts and variation from the entry cohorts (perfectly colinear when weighted by total

male population). Crime rates are better proxies for the exit cohorts if we believe that criminals

across di↵erent states, years, and ages commit similar number of crimes. The only remaining issue

is that the UCR crimes data only vary at the state-year level and we need age-specific exit cohorts

to identify the selection and surprise e↵ects. We thus supplement the UCR crime rates data with

the BJS age-specific arrests data to impute the age-specific crimes7 (Appendix B.2).

Now before we can specify the entry and exit cohorts, we need one more piece of information

(assumption in this case). Remember that we needed the age-specific crimes data to construct the

variables N

Selected
st and N

Surprised
st for the identification of the selection and surprise e↵ects. The

reason is that we need to know which age groups entered when to categorize them into young and

old cohorts (see below for specific procedures). To do so, we opt for a parsimonious specification8

in which we define entry and exit windows. Figure 10 (Appendix B.2) suggests that violent crimes

peak around age 20, across types of crime and time. Classic sociology theory, discussed in Hirschi

and Gottfredson (1983), also confirms that the age distribution of criminals does not vary across

times, places, or types of crime9. We thus define our entry-only window to be age 13-21, and

exit-only window 22-64. The cuto↵s of these windows are also empirically informed, beyond what

the theory suggests. The age range 13-64 covers, on average, 98% of the crimes committed in a

given state-year and allows for easier parametrization (constant entry rate and quadratic exit rates,

see below)10. The age 21 that divides our entry and exit windows is picked out by maximizing the

log-likelihood of the estimated baseline CPDM (see below).

6We loosely define violent criminals as anyone who has comitted at least one of the four types of violent crimes in
a year.

7The imputation procedure and the use of proxy variables will likely introduce measurement errors, which we
assume to be uncorrelated with the regressors, as typically done in this literature.

8An alternative is to specify a nonlinear probability model to figure out the proportions of people of di↵erent entry
dates within age groups.

9This suggests that any legislation di↵erences and changes would impact the whole distribution of ages similarly.
In Figure 10, we observe that the far tails (beyond age 40) of the distributions become fatter over time (from left to
right), suggesting an aging criminal population. However, the distributions still peak around age 20 and thus do not
a↵ect our choice of entry and exit windows.

10This is also the reason why we do not allow overlapping entry and exit windows. The relatively narrow entry
window of 13-21 allows for a plausibly constant entry rate but the variations in young male population do not pick
up all entry variations. Thus allowing exit in the same region would severely bias the exit parametrization.
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Part of the main contribution of this paper is to capture the heterogeneous treatment e↵ects of

SILs due to the dynamically optimizing behaviors of di↵erent cohorts. The selected and surprised

cohorts in the model thus tease these e↵ects (selection and surprise) apart from the base exit rate.

We define the selected and surprised cohorts as follows. With age-specific crimes (or criminals, as

proxied for), an age cohort belongs to the selected cohort if the entirety of its entry window (13-21)

is spent after the SIL passage in that state. Similarly, an age cohort is part of the surprised cohort

if the entirety of its entry window is spent before the SIL passage in that state. For age cohorts that

experience SIL passage during their entry windows, we divide the cohort by weights corresponding

to the number of years within their entry windows before and after SIL passage11.

Key to our identification of CPDM is the di↵erence in the evolution of di↵erent cohorts over

time after the passage of SILs. Expanding on AD’s case studies on the populous state Florida,

where SIL went into e↵ect in 1988, we illustrate these evolutions in Figure 4. The entry cohort

measures male population between 13 and 21 and is relatively stable and exogenous to the SIL

passage. The total exit cohort (of violent criminals) measures the current stock of violent criminals

and thus fluctuates with violent crime rates and exhibits the “inverted-V” shape following the

national pattern. The exit cohort is further divided into the surprised and the selected cohorts

after the adoption of SIL. As time goes by, the selected cohort converges again to the total exit

cohort while the surprised cohort disappears as the violent criminal stock is replaced with entrants

from the post-SIL era. A new equilibrium establishes as the selected cohort coincides with the total

exit cohort. In Figure 4 we also show the lengths of samples used in LM and AD. In examples like

Florida, where SIL is adopted before 1992, LM’s sample weighs more on the surprise e↵ect in a DD

model while AD’s sample weighs more on the selection e↵ect. We show in Section 5.2 that in the

full national sample, given gradual passages of SILs among di↵erent states, DD is biased by the

changing weights of surprise and selection e↵ects while CPDM tease them apart consistently.

Figure 5, on the other hand, shows the evolutions of the average ages of the di↵erent cohorts.

While the overall entry and exit cohorts stay relatively constant in age, the surprised cohort on

average grows in age over time due to the lack of replenishment of new entries and will eventually

all reach retirement age. The selected cohort also on average grows in age due to the initial aging

of its constituents but will be balanced out by new entries and converge to the total exit cohort

around age 34 when the surprised cohort dies out. The di↵erences and changes in average ages

across cohorts and time pose an challenge to the identification of the selection and surprise e↵ects

in our model, which we now turn to address.

Much of this paper is concerned with capturing the heterogeneity in cohorts as defined by the

timing of their entries into crimes and the passage of SILs. However, there is another dimen-

sion of heterogeneity, intertwined with our cohorts definition, which we have so far ignored - the

heterogeneity in ages. People of di↵erent ages have di↵erent physical conditions (important for

committing violent crimes), have accumulated di↵erent levels of human capital (either human cap-

11This is internally consistent in the model when we estimate a constant entry rate. See more discussion below on
aging e↵ects and non-constant entry rates.
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Figure 4: Illustration of Cohort Size Evolutions
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Figure 5: Illustration of Average Cohort Age Evolutions
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ital in the crime career that results in di↵erent skills or human capital outside crimes that results

in di↵erent values of outside options), have di↵erent lengths of potential career left until retirement

in crimes (important if we think that people dynamically optimize in choosing their careers), and

etc.

In theory, these competing forces over the life cycle likely result in a non-linear base exit

probability (irrelevant to the passage of SILs) that bottoms out in male criminals’ 30’s or 40’s.

Ignoring this crucial fact (and only estimating a constant exit rate) will bias estimates for selection

and surprise e↵ects in our model due to their di↵erences and evolutions in ages. To fit the exit rate

over the life cycle empirically, in Figure 6, we plot an empirical distribution of exit rates derived

from the imputed age-specific crime rates. Specifically, we compute the fraction changes from crime

age cohort a in year t to crime age cohort a+ 1 in year t+ 1 in total violent crimes averaged over

all state-years and plot them against age. The positive region in the left panel indicates net entry

and confirms our choice of entry window again12. The right panel suggests that the exit rate for

total violent crimes averages about 8% (without controlling for anything), bottoms out in the early

30’s, and increases until retirement. Therefore, Figure 6 presents empirical evidence for not only

our choice of the entry window but also the functional form we use to parametrize the aging e↵ects

on base exit rates.

We thus parametrize the average base exit rate �0 as a quadratic function in age as follows13,

�0N
Ex
st = �0

64X

a=22

N

Ex
ast + �1

64X

a=22

aN

Ex
ast + �2

64X

a=22

a

2
N

Ex
ast (8)

We then estimate (�0, �1, �2) in place of �0 in the CPDM with aging e↵ects.

In a dynamic model, the surprise e↵ect only measures the average change in exit rates among

the surprised cohort. However, with heterogeneity in proclivity for crime, remaining careers till

retirement, etc., the marginal criminals are to be surprised first, with less incumbent criminals to

be surprised as time passes after the SIL passage. We therefore expect the surprise e↵ect to be

most salient in the immediate years following passages of SILs and to gradually taper o↵ over time.

We thus non-parametrically decompose the surprise e↵ects into several floodgate e↵ects over the

years succeeding the passage of SILs. Specifically, we let �2 =
P9+

j=0 �jI
j
st, where I

j
st are dummies

indicating the j

th year after SIL passage. �j ’s then represent the evolution of the surprise e↵ects

after the initial passages of SILs.

Combining everything discussed above and building upon the baseline CPDM equation, we

arrive at the following estimating equation for CPDM with both aging and floodgate e↵ects.

12These fraction changes do not reflect entry probability since the denominators are current criminals but not
potential entrants. The graph, however, does suggest aging e↵ects on entry as well but specifying a non-constant
entry rate will result in non-lineariry of the model in di↵erentiating selected from surprised cohorts. Since the aging
e↵ects on entry do not interfere with the identification of other coe¢cients in the model, we only estimate the average
entry rate using a constant term.

13Derivation of Equation 8: �0N
Ex

st

= �0
P64

a=22 N
Ex

ast

=
P64

a=22 �
a

N

Ex

ast

=
P64

a=22(�0 + �1a + �2a
2)NEx

ast

=
�0

P64
a=22 N

Ex

ast

+ �1
P64

a=22 aN
Ex

ast

+ �2
P64

a=22 a
2
N

Ex

ast
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Figure 6: Aging E↵ects on Violent Crime Entry and Exit

Notes: fraction changes of the imputed crime rates against ages, averaged across all state-year

observations. The left panel shows the entire criminal career span defined in this paper (13-64, entry and

exit). The right panel zooms in on the 22-64 age range.
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st(NetEntry) =↵0

21X
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SIL
st � �0

64X

a=22

N

Ex
ast � �1

64X

a=22

aN

Ex
ast � �2

64X

a=22

a

2
N

Ex
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��1I
SIL
st

64X

a=22

N

Selected
ast �

9+X

j=0

�jI
j
st

64X

a=22

N

Surprised
ast + �Xst + ✏st (9)

We estimate this equation separately for each crime type as well as the total violent crimes.

The dependent variable, net entry, is constructed as the di↵erence between the number of crimes in

state s in year t+1 and year t weighted by state population in year t, i.e. �C
st = (Ct+1

s �C

t
s)/Pop

t
s.

All cohort variables on the right-hand side are also weighted by state population in year t for

consistency. Xst include all control variables (state population, population density, real per capita

personal income, income maintenance, unemployment insurance, and retirement payment for people

older than 65), state and year fixed e↵ects, and state-specific linear and quadratic time trends. ✏st

is assumed to be autocorrelated over time within each state.

We also follow the dynamic panel data literature (e.g. Anderson and Hsiao (1982)) and use the

lagged variables NEx
as,t+1, N

Selected
as,t+1 and N

Surprised
as,t+1 as instruments for all exit cohorts in the model14.

The additional identifying assumption being made is that crime rates Cst follow an AR(1) process

over time within each state. We then use two stage least squares to estimate the CPDM.

14This is because the exit cohorts are imputed partially with the crime rates.
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5 Results

In this section we present the estimates of our CPDM, test for the deterrence hypothesis as well as

the model specification, further compare DD to the CPDM, and finally decompose the three e↵ects

from CPDM in a counterfactual example.

5.1 CPDM Estimates

Table 4 presents estimates of 4 di↵erent specifications of the CPDM, with and without the aging

and the floodgate e↵ects, on the total violent crimes only.

The baseline model estimates only the three basic e↵ects (direct, selection, and surprise) on

top of the base entry and exit rates. Only the CPDM parameters are reported and signed under

the deterrence hypothesis in parentheses. The signs of the precisely estimated direct e↵ect ↵1

and selection e↵ect �1 contradict those predicted under the deterrence hypothesis, which we thus

strongly reject. The two signs are, however, internally consistent within the model - more entry into

violent crimes after SIL passages will lead to higher rate out of the criminal force when it comes to

exit - a labor force shakeout. The surprise e↵ect, on the other hand, is estimated to increase exit

rates post-SIL for cohorts who became criminals before SIL passages. The older incumbent cohort

is still shocked negatively despite the positive reactions of the potential entrants. We thus only find

evidence on partial detterence of SILs on the incumbent criminals.

To interpret the magnitudes of our estimates, we note again that the model is estimated with

crime rates as proxies instead of actual criminal populations. The dependent variable as well as

all the exit cohorts are measured in the number of crimes (all variables are then weighted by every

100,000 state population), while the entry cohorts are measured in the number of potential entrants.

Therefore, we have actually estimated the following equation,

�C
st(NetEntry) =↵̂0

21X

a=13

N

En
ast + ↵̂1

21X

a=13

N

En
ast I

SIL
st � �0

64X

a=22

N

Ex
ast

��1I
SIL
st

64X

a=22

N

Selected
ast � �2I

SIL
st

64X

a=22

N

Surprised
ast + �Xst + ✏st

where  is the number of crimes committed by a career violent criminal in a year and assumed

to be constant across age, state, and time. Now the ↵̂’s and �’s measure the corresponding entry

and exit probabilities into and out of the criminal force (since we can divide the equation through

by ). Since we can not separately identify the ↵̂’s from  due to data limitations, we only roughly

interpret the magnitudes of the ↵’s. The estimated ↵1 suggests that, if a criminal commits 10

violent crimes a year, we estimate a 0.19% entry probability into violent criminals from the pool of

all males between 13-21 in the absence of SIL. On the other hand, without knowing , we estimate

a 22.3% (= 0.0042/0.0188) increase in this entry probability due to the direct e↵ect of SIL. For

exits, in the absence of SIL, violent criminals are estimated to exit with 53.1% probability annually.
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Table 4: CPDM Specification Comparisons

Baseline w/ Aging w/ Floodgate w/ Both
Entry ↵0 0.0188*** 0.0111† 0.0210*** 0.0148*

(0.0145) (0.2742) (0.0049) (0.1418)
SIL Entry ↵1 (-) 0.0042*** 0.0055*** 0.0037*** 0.0046**

(0.0049) (0.0023) (0.0054) (0.0208)
Exit �0 0.5310*** 0.5269***

(0.0000) (0.0000)
Exit �0 51.7108*** 51.8624***

(0.0032) (0.0027)
Exit �1 -3.2453*** -3.2551***

(0.0024) (0.0020)
Exit �2 0.0483*** 0.0484***

(0.0016) (0.0013)
Selection �1 (-) 0.2628** -0.1023 0.3759*** 0.1161*

(0.0429) (0.3787) (0.0179) (0.1697)
Surprise �2 (+) 0.1129*** 0.1086***

(0.0006) (0.0195)
Floodgate �0 0.1071*** 0.0890**

(0.0002) (0.0537)
Floodgate �1 0.0962*** 0.0822**

(0.0120) (0.0669)
Floodgate �2 0.1091*** 0.0886*

(0.0007) (0.1531)
Floodgate �3 0.0960*** 0.0706†

(0.0020) (0.2672)
Floodgate �4 0.0770*** 0.0555

(0.0132) (0.4294)
Floodgate �5 0.0558* 0.0301

(0.1262) (0.7143)
Floodgate �6 0.0630* 0.0355

(0.1309) (0.7152)
Floodgate �7 0.0351 -0.0199

(0.3907) (0.8304)
Floodgate �8 0.0008 -0.0609

(0.9880) (0.5588)
Floodgate �9+ -0.0050 -0.1172

(0.9487) (0.3825)
Log-likelihood -7694 -7696 -7688 -7682
F-statistics 175.5 138.0 111.6 95.4
Nb. Obs. 1549 1549 1549 1549

Notes: all regressions are run on the total violent crimes. Arrest rates of violent crimes, demographic and

welfare controls, state and year fixed e↵ects and state-specific linear and quadratic time trends are

controlled for but not reported. �0, �1, �2 are coe�cients of the constant, linear and quadratic terms of the

exit function (of age). �
j

’s measure the surprise e↵ect in the j

th year after SIL passage. Key coe�cients

relevant for testing the deterence hypothesis are signed in parentheses. Standard errors are clustered at the

state level. Two-sided p values are in parentheses. †, *, **, and *** indicate one-sided statistical

significance at the 15, 10, 5, and 1 percent level.
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The estimated selection and surprise e↵ects suggest that the criminal cohort that entered after SIL

passages experience an additional 26.3 percentage points in exit probability with SIL due to the

dilution in criminal quality from the higher entry rate, while the cohort that entered before SIL

passages is surprised and exits with a probability increase of 11.3 percentage points.

Building upon the baseline model, we first introduce the aging e↵ects that parametrize the base

exit rate. We find very strong empirical evidence supporting the aging e↵ects on base exit rates

for violent criminals. All aging parameters are strongly significant. The resulting parabola of exit

rates constructed from these estimates suggests the lowest exit rate around age 34, evidence for the

peak of violent criminals’ careers as a consequence of aging and huamn capital accumulations. All

CPDM coe�cients stay unchanged from the baseline model except for the selection e↵ect. Aging

e↵ects take away the significance of the selection e↵ect coe�cient due to the di↵erences in average

ages across these di↵erent cohorts. The previously estimated selection e↵ect is thus an artifact of

the fact that the selected cohort is on average much younger, which is now absorbed away by the

aging e↵ects.

On the other hand, if we just relax the surprise e↵ect to be flexible over time with the floodgate

e↵ects, the estimated CPDM parameters (except the surprise e↵ect) stay almost unchanged from

the baseline specification, while the surprise e↵ect gets less precisely estimated over time as cohorts

drop out of our sample. We refuse the temptation of re-running the regressions with ex-post

cuto↵s but only report them in Table 11 for robustness. The estimated magnitudes of the surprise

e↵ect also confirm the theory and taper o↵ over time, capturing the reactions of the older cohort.

Combining all of above, we arrive at our preferred specifiation with both aging and floodgate e↵ects,

as stated in Equation 9 and shown in the last column of Table 4.

We maximize the log-likelihood of the total violent crime regression to arrive at the entry window

cuto↵ at age 21. F-statistics of the full model strongly reject null hypotheses that all coe�cients

of the model (except state and year fixed e↵ects) are zeros and provide measures of the fit of the

model.

We conduct hypothesis and specification tests in Table 5. Here we first formally test that the

parabola of exit rates bottom out around age 33.6, statistically significant from zero. We also show

that the aging e↵ects and floodgate e↵ects are both jointly significant where applicable. Although

it is obvious from the point estimates in Table 4 that the deterrence hypothesis (↵1 > 0, �1 < 0,

and �2 > 0) will be rejected, we present the formal one-sided hypothesis tests in Table 5. Finally,

we turn to the specification tests of DD. Specifically, the null hypotheses are the two restrictions in

Section 2.1.3 that reduce the CPDM to Equation 5 and Equation 6. Namely, (1) �1 = �2 = �⇤ and

((2) ↵0 = ��0, (3) ↵1 = ��⇤). Note that when we specify the non-parametric floodgate e↵ects,

(1) and (3) require all the floodgate e↵ects to be the same with the selection e↵ect to reduce to

DD. Bottom of Table 5 then shows results that strongly reject the DD specification across all four

specifications of the CPDM.

We further estimate our preferred specification on the four sub-categories of violent crimes.

Table 6 shows the results. We first note that most of the estimated CPDM parameters (with
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Table 5: Hypothesis and Specification Tests: CPDM Specifications (Table 4)

Baseline w/ Aging w/ Floodgate w/ Both
Turning point 33.6*** 33.6***

(0.0000) (0.0000)
Joint significance tests

Aging (�’s) 17.21*** 16.90***
(0.0002) (0.0002)

Floodgates (�’s) 32.27*** 34.72***
(0.0004) (0.0001)

Deterrence hypothesis tests

↵1 < 0 0.0042*** 0.0055*** 0.0037*** 0.0046**
(one-sided) (0.0025) (0.0012) (0.0027) (0.0104)

�1 < 0 0.2628** -0.1023 0.3759*** 0.1161*
(one-sided) (0.0215) (0.8107) (0.0090) (0.0849)

�2 > 0 0.1129 0.1086 0.0972 0.0773
(one-sided) (0.9997) (0.9903) (0.9997) (0.9185)

Di↵-in-di↵ nested specification tests

(1) �1 = �j , 8j 1.25 3.03* 15.22† 23.96***
(0.2628) (0.0815) (0.1241) (0.0077)

(2) ↵0 = ��0 162.31*** 296.04*** 175.48*** 323.69***
(0.0000) (0.0000) (0.0000) (0.0000)

(3) �↵1 = �1 = �j , 8j 16.02*** 6.80** 32.18*** 44.15***
(0.0003) (0.0333) (0.0000) (0.0000)

(2) & (3) 171.75*** 313.08*** 475.39*** 588.90***
(0.0000) (0.0000) (0.0000) (0.0000)

Notes: age of the turning point, F-statistics for the joint significance tests, point estimates of the CPDM

parameters, and F-statistics for the DD tests are shown. For specifications with floodgate e↵ects, we

replace �2 with the weighted cumulative surprise e↵ect of the first five floodgate e↵ects, i.e.
P4

j=0 �j

P
i

Iij
stP

i,j

Iij
st

> 0. One-sided p values are in parentheses for the deterrence hypothesis tests.

Two-sided p values are in parentheses for the rest. †, *, **, and *** indicate one-sided (deterrence

hypothesis tests) and two-sided (rest) statistical significance at the 15, 10, 5, and 1 percent level.
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Figure 7: Estimated Selection and Floodgate Surprise E↵ects

Notes: point estimates of selection (leftmost on each plot) and floodgate e↵ects from CPDM on violent

crimes and sub-categories (Table 6).

exception of surprise e↵ects in later years) are significant and very consistent across crime types,

suggesting much stronger results compared to the existing literature on SILs.

The floodgate surprise e↵ects are again higher and more precisely estimated at the beginning

and taper o↵ nicely in later years. The pattern persists across all crime types as well. Figure 7 plots

the floodgate surprise e↵ects against the estimated selection e↵ect (leftmost). The selection e↵ects

are generally higher than or equal to the surprise e↵ects, suggesting again against the deterrence

hypothesis. The di↵erences between the two e↵ects (particularly in rape and robbery) also imply

the misspecification of a DD.

In the same vein of Table 5, we show results of formal hypothesis and specification tests on

Table 4 in Table 7. We find the turning points to be statistically significant and consistent across

crime types, with murder being slightly higer (39) and rape and aggravated assault lower (30),

reflecting the peak of the combination of male physical conditions and criminal skill accumulations.

All other tests show similar results across crime types as the total violent crime as shown in Table

5.

5.2 Comparing DD to CPDM

We further compare DD to our CPDM in this section, in relation to the evolutions of cohorts.

Expanding on the Florida example depicted in Figure 4, Figure 8 shows the evolutions of average

cohort sizes (across states) over time. Again, the total entry cohort measures male population

between 13-21 and is stable over time (exogenous to SIL passages). Interacting the entry cohort
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Table 6: CPDM with Aging and Non-Parametric Floodgate E↵ects: Crime Types

Violent Murder Rape Robbery Agg. Ast.
Entry ↵0 0.0148* 0.0003** 0.0009† 0.0127** 0.0087*

(0.1418) (0.0906) (0.2303) (0.0379) (0.1455)
SIL Entry ↵1 (-) 0.0046** 0.0001** -0.0001 0.0012** 0.0015*

(0.0208) (0.0931) (0.5455) (0.0571) (0.1625)
Exit �0 51.8624*** 27.6572*** 15.8851** 127.8388*** 15.3134***

(0.0027) (0.0000) (0.0626) (0.0001) (0.0017)
Exit �1 -3.2551*** -1.5197*** -1.1057** -7.9613*** -1.0533***

(0.0020) (0.0000) (0.0296) (0.0001) (0.0002)
Exit �2 0.0484*** 0.0193*** 0.0183*** 0.1182*** 0.0173***

(0.0013) (0.0000) (0.0122) (0.0000) (0.0000)
Selection �1 (-) 0.1161* 0.1101 0.2250 0.6073** 0.0133

(0.1697) (0.8271) (0.3451) (0.0978) (0.8487)
Floodgate �0 0.0890** 0.1354* -0.0322 0.1698** 0.0348

(0.0537) (0.1987) (0.5159) (0.0880) (0.3547)
Floodgate �1 0.0822** 0.1521* -0.0224 0.1725*** 0.0242

(0.0669) (0.1805) (0.7011) (0.0163) (0.5000)
Floodgate �2 0.0886* 0.0749 0.0075 0.1423* 0.0407

(0.1531) (0.4367) (0.9043) (0.1748) (0.3396)
Floodgate �3 0.0706† 0.1601† -0.0659 0.1748† 0.0158

(0.2672) (0.2101) (0.4377) (0.2149) (0.6921)
Floodgate �4 0.0555 0.1107* -0.0671 0.1667† 0.0010

(0.4294) (0.1630) (0.3416) (0.2820) (0.9826)
Floodgate �5 0.0301 0.0862 -0.0550 0.1114 -0.0115

(0.7143) (0.4756) (0.4754) (0.5664) (0.8261)
Floodgate �6 0.0355 0.0735 -0.0552 0.1097 -0.0187

(0.7152) (0.4470) (0.4965) (0.6520) (0.7663)
Floodgate �7 -0.0199 0.2120** -0.2131** 0.0434 -0.0535

(0.8304) (0.1474) (0.0782) (0.8584) (0.3525)
Floodgate �8 -0.0609 -0.0091 -0.1217 0.0761 -0.1211**

(0.5588) (0.9305) (0.3146) (0.7633) (0.0908)
Floodgate �9+ -0.1172 0.0378 -0.1722* -0.1743 -0.1241*

(0.3825) (0.7961) (0.1564) (0.6609) (0.1631)
Log-likelihood -7682 -2286 -4012 -6827 -7088
F-statistics 95.4 672.5 62.3 171.8 122.2
Nb. Obs. 1549 1548 1547 1546 1549

Notes: arrest rates (of corresponding crime categories), demographic and welfare controls, state and year

fixed e↵ects and state-specific linear and quadratic time trends are controlled for but not reported. �0, �1,

�2 are coe�cients of the constant, linear and quadratic terms of the exit function (of age). �
j

’s measure

the surprise e↵ect in the j

th year after SIL passage. The F-statistics test for the joint significance of all

estimated coe�cients and reject the null (all coe�cients are equal to zero) in all specifications. Key

coe�cients relevant for testing the deterence hypothesis are signed in parentheses. Standard errors are

clustered at the state level. Two-sided p values are in parentheses. †, *, **, and *** indicate one-sided

statistical significance at the 15, 10, 5, and 1 percent level.
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Table 7: Hypothesis and Specification Tests: Crime Types (Table 6)

Violent Murder Rape Robbery Agg. Ast.
Turning point 33.6*** 39.3*** 30.2*** 33.7*** 30.5***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Joint significance tests

Aging (�’s) 16.90*** 51.10*** 8.24** 58.91*** 25.52***
(0.0002) (0.0000) (0.0162) (0.0000) (0.0000)

Floodgates (�’s) 34.72*** 7.79 32.43*** 32.60*** 18.30*
(0.0001) (0.6498) (0.0003) (0.0003) (0.0501)

Deterrence hypothesis tests

↵1 < 0 0.0046** 0.0001** -0.0001 0.0012** 0.0015*
(one-sided) (0.0104) (0.0466) (0.7273) (0.0286) (0.0813)

�1 < 0 0.1161* 0.1101 0.2250 0.6073** 0.0133
(one-sided) (0.0849) (0.4136) (0.1726) (0.0489) (0.4244)

�2 > 0 0.0773 0.1268 -0.0360 0.1653 0.0234
(one-sided) (0.9185) (0.9052) (0.2782) (0.9346) (0.7363)

Di↵-in-di↵ nested specification tests

(1) �1 = �j , 8j 23.96*** 15.59† 32.60*** 21.51** 17.52*
(0.0077) (0.1120) (0.0003) (0.0178) (0.0636)

(2) ↵0 = ��0 323.69*** 216.66*** 38.21*** 430.67*** 74.06***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

(3) �↵1 = �1 = �j , 8j 44.15*** 25.25*** 32.65*** 35.45*** 18.47*
(0.0000) (0.0084) (0.0006) (0.0002) (0.0712)

(2) & (3) 588.90*** 364.62*** 82.23*** 742.73*** 154.53***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Notes: age of the turning point, F-statistics for the joint significance tests, point estimates of the CPDM

parameters, and F-statistics for the DD tests are shown. We replace �2 with the weighted cumulative

surprise e↵ect of the first five floodgate e↵ects, i.e.
P4

j=0 �j

P
i

Iij
stP

i,j

Iij
st

> 0. One-sided p values are in

parentheses for the deterrence hypothesis tests. Two-sided p values are in parentheses for the rest. †, *, **,
and *** indicate one-sided (deterrence hypothesis tests) and two-sided (rest) statistical significance at the

15, 10, 5, and 1 percent level.
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Figure 8: Evolutions of National Average Cohort Sizes
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Entry Cohort Entry Cohort * SIL Exit Cohort

Selected Cohort Surprised Cohort

LM
AD

Notes: entry cohorts (solid lines) are measured in 100,000 population on the left axis. Exit cohorts

(dashed/dotted lines) are measured in 100,000 population on the right axis. Cohorts are averaged across

all states. The vertical dashed lines indicate where LM and AD’s samples end, respectively.

with SIL passages, the double-solid line exhibits the growth of SIL states as shown in Figure 1. The

total exit cohort again follows the national trend of violent crimes. However, note that the total

exit cohort is not the sum of the selected and surprised cohorts nationally as states adopt SILs at

di↵erent times and some states never do so. The surprised cohort first increases as more states

adopt SILs and then starts decreasing in late 1990’s as the old criminal cohorts exit without being

replenished. Finally, the selected cohort keeps gradually increasing as more states adopt SILs and

more new criminals having entered under SILs.

Top of Table 8 presents the evolutions of the shares of these cohorts for di↵erent sample lengths

(LM, AD, and this paper). sEn is the share of the entry cohort as a fraction of the total population

at risk (the sum of entry and exit cohorts). s

⇤Selected and s

⇤Surprised are defined similarly as in

Section 2.1.1, as a fraction of the total exit cohort. Note that the share of the surprise cohort is

highest in the middle sample due to the dynamics.

Given these evolutions, we then compare the corresponding DD estimates in these di↵erent

samples with our CPDM. We estimate two standard DD models as follows,

Cst =↵+ �I

SIL
st + �Xst + "st (10)

�C
st =↵

0 + �

0
I

SIL
st + �0

Xst + "st (11)
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where Equation 10 is estimated with levels of violent crimes, while Equation 11 uses year-to-year

changes of violent crimes. ISILst is the standard multiple-event DD dummy that equals one if state

s has SIL in place at time t. Xst includes the same set of controls as in our CPDM in Equation

9. Note that Equation 11 is the same with Equation 6 after weighting by the total population.

The first two samples highly resemble the data used in LM and AD15. The DD specifications in

Equations 10 and 11 are more general and robust than the “dummy variable model” of LM and

the “hybrid model” of AD16. We also account for auto-correlated errors by clustering at the state

level.

The estimates are shown in the middle panel of Table 8. Similar to BDM, we find that most

of the e↵ects are essentially zero (with no consistency in signs) after controlling for trends and

auto-correlations of errors. We only find significant e↵ects (about 7% reduction in crimes following

passages of SILs) with the 1980-1999 sample on the levels of crime rates17. The DD estimates reflect

the evolutions and o↵setting e↵ects of the di↵erent cohorts. We have found that the surprise e↵ect

increases exit rates and thus decreases net entry rates and levels of crimes - the e↵ect of SIL on

crimes is thus dominantly negative when the surprised cohort dominates in the 1980-1999 sample.

The reversed trends of the entry and exit cohorts, together with the positive entry and selection

e↵ects, also contribute to the negative DD estimate in the 1990’s sample. In the full sample, as

the exit cohort shrinks with the national trend, the surprised cohort decreases, and the tapering

o↵ of the surprise e↵ect over time, we see very weak evidence of positive e↵ects estimated by DD.

The DD estimates are also largely insignificant as the entry e↵ects o↵set the surprise and selection

e↵ects.

We then turn to the CPDM estimates of the varying sample lengths in the bottom panel.

For comparison, we only show estimates from the baseline CPDM using ordinary least squares18.

We find strongly significant results with consistency in the estimated signs across di↵erent sample

lengths. In the shorter samples, the CPDM also struggles to precisely estimate base exit rates

(column 1) and base entry rates (column 2), which may bias the dynamic selection and surprise

e↵ects slightly upwards due to the aging e↵ects of exit. Despite of this, the CPDM also consistently

estimates the direct entry e↵ect across all samples, which, together with the consistently estimated

signs of other parameters, yields the most important policy implications.

15We di↵er with them in data in two ways. Both of their data begin with 1977 while ours is cut o↵ at 1980 due to
the availability of the cohort population data. We also estimate a DD from 1977 but only report results from 1980
(which are similar) for comparison with the CPDM. While AD also use state-level panel data, LM uses county-level
crime data. We also use state-level data for comparison with CPDM but the DD estimates are similar on the county
level as well.

16We defer further discussions on the literature to Appendix A.2. See Table 15 and Table 16 for details.
17These results largely contradict with findings of LM and AD. See Appendix A.2 for replications of LM and AD,

and comparisons of di↵erent DD specifications.
18For robustness, see Appendix A.1.4 for OLS estimates of the full model.
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Table 8: Comparison of DD with CPDM for Di↵erent Sample Lengths

1980-1992 1980-1999 1980-2011
Average Cohort Sizes

s

En 0.9585 0.9559 0.9574
s

En
I

SIL 0.1707 0.2762 0.4230
s

Ex = 1� s

En 0.0415 0.0441 0.0426
s

⇤Selected 0.4727 0.3235 0.3585
s

⇤Surprised 0.5273 0.6765 0.6415
Di↵-in-Di↵ in Levels

SIL Dummy -0.8789 -38.0306* 0.8612
(0.9550) (0.0582) (0.9580)

Di↵-in-Di↵ in Changes

SIL Dummy -1.6291 -0.2657 2.6447
(0.8881) (0.9758) (0.6256)

Baseline CPDM

Entry 0.1626* 0.0091 0.0190**
(0.0949) (0.7368) (0.0107)

SIL Entry 0.0017 0.0028* 0.0041***
(0.3214) (0.0538) (0.0015)

Exit 1.0768*** 0.3946*** 0.3232***
(0.0000) (0.0003) (0.0000)

Selection 0.2604 0.3174* 0.1943†

(0.6146) (0.0595) (0.1342)
Surprise 0.0381 0.1054*** 0.1067***

(0.5829) (0.0000) (0.0001)
Nb. Obs. 657 994 1549

Notes: all regressions are run on the total violent crimes. All regressions are run using OLS. Arrest rates of

violent crimes, demographic and welfare controls, state and year fixed e↵ects and state-specific linear and

quadratic time trends are controlled for but not reported. Standard errors are clustered at the state level.

Two-sided p values are in parentheses. †, *, **, and *** indicate two-sided statistical significance at the 15,

10, 5, and 1 percent level.
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5.3 Counterfactual Example

In order to make direct policy evaluations with the CPDM, accouting for the entry, selection and

surprise e↵ects, we consider the following counterfactual example. In this example, we eliminate

SILs from all states and compute the counterfactual crime levels in the U.S. had we never adopted

SILs. To do so, we start with crime rates in 1980 at the beginning of our sample, let the CPDM

predict changes in crimes from year to year for all states while shutting down all post-SIL e↵ects

(entry, selection, and surprise), and then simulate crime levels for all states in all following years.

The result is shown in Figure 9. The actual data (solid line) shows that violent crimes totaled at

1.3 million in the U.S. in 1980, peaked at 1.9 million in 1992, and settled at 1.2 million in 2011.

When we take away the e↵ects of SILs (dotted line), we find a drop in violent crimes that shows

the dynamic properties that the CPDM captures. After eliminating SILs, the counterfactually

predicted crime rates track the actual crime rates very closely for 2/3 of the sample and only

diverge in the last 1/3, although by year 2000, 3/4 of the states have already adopted SIL. For

example, in 1995, the counterfactual prediction only shows a 1.4% (about 26000 crimes annually)

reduction in crime levels. By 2011, there is a large reduction of 34.8% (or about 419000 crimes) in

total violent crimes19.

We then further decompose this gap between the levels of crimes into the three e↵ects captured

by CPDM. From the dotted line where there are no post-SIL e↵ects, we first add back only the direct

entry e↵ect (dash-dotted line). Graphically, the entry e↵ect is positive and significant, driving up

the total violent crime level to about 1.4 million in 2011. Adding on top of that the surprise e↵ects

(dashed line), which increase exit rates in the first few years following SIL passages and taper o↵

after, shifts down the overall curve but dissipates at the end of the sample. Finally, the remaining

gap between the dashed line and the solid line represents the selection e↵ect, which captures the

increased exit rates from the lesser criminals who entered post-SIL. As expected, this gap keeps

widening over time as the younger cohorts replace their older counterparts.

6 Conclusion

In this paper, we use a more general cohort panel data model to bring a consistent and unified

answer to the debate of the e↵ects of shall-issue laws on violent crimes. The CPDM incorporates

dynamic decision-making by forward-looking agents through the estimation of (i) a direct e↵ect of

SIL passages on entry (into violent crime careers), (ii) a selection e↵ect on exit for those who entered

the violent crime under SIL, and (iii) a surprise e↵ect on exit for those who entered prior to the

advent of SIL. We find all three e↵ects to be positive - suggesting that in addition to the deterrence

e↵ect on existing criminals (who entered before SIL), the passages of SIL also substantially lower

19We interpret the large drop as an upper bound for the amount of crime reductions if SILs were eliminated. The
reason is that, although we have eliminated all post-SIL e↵ects in the counterfactual simulation, we keep the stock
of criminals (i.e. base exit cohorts) constant. With lower entry rate absent SILs, we should see a smaller stock of
criminals and consequently less exits as well, which would shift up the dotted line. We ignore this second-order e↵ect
in this exercise.
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Figure 9: Decomposition of Entry, Selection, and Surprise E↵ects
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Notes: counterfactual national violent crime levels if no SILs were ever adopted. Brackets indicate

magnitudes of indicidual entry, selection, and surprise e↵ects, decomposed in contribution to the total

e↵ect of SILs on crimes. Estimates obtained from OLS regressions.

the barrier of entry for new potential criminals. The combined e↵ect is large - eliminating all passed

SILs from the beginning would reduce total violent crimes by about one third by 2011.

We further show that in contexts where heterogeneous agents make forward-looking decisions the

standard DD is a model misspecification due to the lack of dynamic considerations. Our CPDM

reduces to the standard DD with restrictions that shut down the three e↵ects. The estimated

coe�cients strongly reject such restrictions and thus rule the DD as misspecified. We then compare

the CPDM and DD estimates on samples with varying lengths corresponding to the literature (LM

and AD). We find that the DD estimates fluctuate systematically based on the evolutions of cohort

shares - leading to the heated debate in the literature. The CPDM, on the other hand, yields

consistent and highly significant results across di↵erent sample lengths.
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A Appendix

A.1 Robustness

A.1.1 Entry Windows and Retirement Ages

In our main specification, we choose the starting age of the entry window and the retirement age

based on the empirical distribution of arrests over ages. We then choose the cuto↵ between the entry

window and the exit window by maximizing the log-likelihood of the baseline CPDM estimation20.

In this section, we arbitrarily vary these three cuto↵s and show that our results are robust. Table

9 presents the results estimated on our preferred specification.

A.1.2 Aging E↵ects

In this section, we explore di↵erent functional forms of the aging e↵ects on base exit rates and

the robustness of the CPDM to the di↵erent parametrizations. Table 10 presents the results. We

note that, although in the last column the cubic term is statistically significant, we believe that the

more parsimonious quadratic polunomial is su�ciently flexible. On the other hand, we have robust

estimates across all specifications except the selection e↵ect in the last column, which is imprecisely

estimated.

A.1.3 Floodgate E↵ects

In our preferred specification, we adopt a non-parametric specification of the floodgate e↵ects.

In this section, we show that our estimates for all crime types are robust to more parametric

specifications. Table 11 presents the results when we group individual year fixed e↵ects and Table

12 shows the linear trend estimates.

A.1.4 OLS Estimates

Table 13 presents estimates from OLS without the dynamic panel instruments. We find similar

results compared with Table 6 using IVs.

A.1.5 CPDM on Levels

A.2 Literature Replications

In this section, we review and test the robustness of model specifications in LM and AD. We

use state-level panel data from 1980 onwards and only present results on the total violent crimes.

LM adopts a simple “dummy variable model,” where they only control for state and year fixed

e↵ects (but not trends). We first try to replicate their results with our data and then test its

robustness with variations of the specification, controls, and sample lengths. Table 15 shows the

results. Column (1) resembles the most of their main specification. Specifically, the dependent

20The reported standard errors do not take into account the uncertainty of the cuto↵s.
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Table 9: Entry Window and Retirement Cuto↵s (Entry Start-Entry End-Retirement)

(11-21-64) (15-21-64) (13-19-64) (13-23-64) (13-21-54) (13-21-74)
Entry ↵0 0.0168** 0.0119† 0.0137† 0.0106† 0.0160** 0.0128*

(0.0899) (0.2806) (0.2570) (0.2469) (0.0855) (0.1795)
SIL Entry ↵1 0.0040*** 0.0055** 0.0051** 0.0040** 0.0034** 0.0050***

(0.0136) (0.0342) (0.0258) (0.0229) (0.0320) (0.0130)
Exit �0 52.5361*** 51.1861*** 34.6856*** 70.3408*** 47.2253*** 54.1816***

(0.0028) (0.0030) (0.0000) (0.0128) (0.0013) (0.0015)
Exit �1 -3.2961*** -3.2166*** -2.2753*** -4.2844*** -2.9579*** -3.3876***

(0.0021) (0.0022) (0.0000) (0.0103) (0.0008) (0.0011)
Exit �2 0.0490*** 0.0479*** 0.0350*** 0.0623*** 0.0445*** 0.0498***

(0.0014) (0.0014) (0.0000) (0.0076) (0.0004) (0.0007)
Selection �1 0.1158* 0.1141* 0.1352** 0.1024 0.2259** 0.1029†

(0.1702) (0.1871) (0.0960) (0.3266) (0.0454) (0.2056)
Floodgate �0 0.0927** 0.0842** 0.0666** 0.1056** 0.0738** 0.0994**

(0.0447) (0.0689) (0.0691) (0.0568) (0.0601) (0.0303)
Floodgate �1 0.0851** 0.0779** 0.0598** 0.0979** 0.0649** 0.0943**

(0.0568) (0.0860) (0.0919) (0.0709) (0.0903) (0.0372)
Floodgate �2 0.0911* 0.0844* 0.0644* 0.1070* 0.0715* 0.1020*

(0.1390) (0.1806) (0.1912) (0.1453) (0.1716) (0.1008)
Floodgate �3 0.0734† 0.0660 0.0477 0.0888† 0.0505 0.0817†

(0.2431) (0.3115) (0.3411) (0.2447) (0.3337) (0.2004)
Floodgate �4 0.0583 0.0506 0.0344 0.0747 0.0304 0.0664

(0.4004) (0.4838) (0.5436) (0.3674) (0.6134) (0.3233)
Floodgate �5 0.0329 0.0246 0.0131 0.0474 0.0041 0.0441

(0.6843) (0.7731) (0.8452) (0.6196) (0.9544) (0.5765)
Floodgate �6 0.0386 0.0295 0.0168 0.0555 0.0062 0.0554

(0.6852) (0.7724) (0.8342) (0.6184) (0.9427) (0.5559)
Floodgate �7 -0.0145 -0.0303 -0.0323 -0.0098 -0.0461 0.0053

(0.8729) (0.7607) (0.6692) (0.9273) (0.5650) (0.9526)
Floodgate �8 -0.0521 -0.0752 -0.0706 -0.0544 -0.0913 -0.0341

(0.6030) (0.5033) (0.4057) (0.6452) (0.3309) (0.7285)
Floodgate �9+ -0.1025 -0.1346 -0.1171† -0.1216 -0.1396† -0.0837

(0.4200) (0.3496) (0.2866) (0.4208) (0.2589) (0.5118)
Nb. Obs. 1549 1549 1549 1549 1549

Notes: all regressions are run on the total violent crimes. Arrest rates of violent crimes, demographic and

welfare controls, state and year fixed e↵ects and state-specific linear and quadratic time trends are

controlled for but not reported. �0, �1 and �2 are coe�cients of the constant, linear and quadratic terms of

the exit function (of age). �
j

’s measure the surprise e↵ect in the j

th year after SIL passage. Standard

errors are clustered at the state level. Two-sided p values are in parentheses. †, *, **, and *** indicate

one-sided statistical significance at the 15, 10, 5, and 1 percent level.
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Table 10: Parametrizations of Aging E↵ects

Constant Linear Quadratic Cubic Translog Quad. Exp.
Entry ↵0 0.0210*** 0.0082† 0.0148* 0.0108† 0.0143* 0.0148*

(0.0049) (0.2139) (0.1418) (0.2354) (0.1319) (0.1418)
SIL Entry ↵1 0.0037*** 0.0025** 0.0046** 0.0063*** 0.0039** 0.0046**

(0.0054) (0.0311) (0.0208) (0.0049) (0.0320) (0.0208)
Exit �0 0.5269*** -5.6213*** 51.8624*** -153.8857*** 626.4235*** 4.8548***

(0.0000) (0.0000) (0.0027) (0.0001) (0.0004) (0.0077)
Exit �1 0.1913*** -3.2551*** 14.5884*** -363.0427*** -1.2217***

(0.0000) (0.0020) (0.0002) (0.0003) (0.0038)
Exit �2 0.0484*** -0.4523*** 52.3943*** 0.0484***

(0.0013) (0.0004) (0.0003) (0.0013)
Exit �3 0.0045***

(0.0006)
Selection �1 0.3759*** 0.2822** 0.1161* 0.0081 0.1701** 0.1161*

(0.0179) (0.0221) (0.1697) (0.9323) (0.0816) (0.1696)
Floodgate �0 0.1071*** 0.0529** 0.0890** 0.1186*** 0.0781** 0.0890**

(0.0002) (0.0970) (0.0537) (0.0157) (0.0692) (0.0537)
Floodgate �1 0.0962*** 0.0454* 0.0822** 0.1137** 0.0711** 0.0822**

(0.0120) (0.1841) (0.0669) (0.0209) (0.0875) (0.0669)
Floodgate �2 0.1091*** 0.0596* 0.0886* 0.1284** 0.0769* 0.0886*

(0.0007) (0.1572) (0.1531) (0.0473) (0.1838) (0.1531)
Floodgate �3 0.0960*** 0.0476† 0.0706† 0.1213** 0.0577 0.0706†

(0.0020) (0.2518) (0.2672) (0.0768) (0.3244) (0.2672)
Floodgate �4 0.0770*** 0.0296 0.0555 0.1171** 0.0397 0.0555

(0.0132) (0.5070) (0.4294) (0.0996) (0.5456) (0.4294)
Floodgate �5 0.0558* 0.0089 0.0301 0.0957† 0.0145 0.0301

(0.1262) (0.8647) (0.7143) (0.2320) (0.8517) (0.7143)
Floodgate �6 0.0630* 0.0113 0.0355 0.1098† 0.0178 0.0355

(0.1309) (0.8438) (0.7152) (0.2345) (0.8463) (0.7152)
Floodgate �7 0.0351 -0.0282 -0.0199 0.0527 -0.0334 -0.0199

(0.3907) (0.5733) (0.8304) (0.5417) (0.6999) (0.8304)
Floodgate �8 0.0008 -0.0607 -0.0609 0.0210 -0.0744 -0.0609

(0.9880) (0.3248) (0.5588) (0.8298) (0.4480) (0.5587)
Floodgate �9+ -0.0050 -0.0835 -0.1172 -0.0466 -0.1206 -0.1172

(0.9487) (0.3108) (0.3825) 0.7168 (0.3368) (0.3825)
Nb. Obs. 1549 1549 1549 1549 1549 1549

Notes: all regressions are run on the total violent crimes. Arrest rates of violent crimes, demographic and

welfare controls, state and year fixed e↵ects and state-specific linear and quadratic time trends are

controlled for but not reported. �0, �1, �2 and �3 are coe�cients of the constant, linear, quadratic and

cubic terms of the exit function (of age). For the translog function, we replace age with log(age); for the

quadratic experience column, we replace age with age� 21. �
j

’s measure the surprise e↵ect in the j

th year

after SIL passage. Standard errors are clustered at the state level. Two-sided p values are in parentheses.

†, *, **, and *** indicate one-sided statistical significance at the 15, 10, 5, and 1 percent level.
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Table 11: CPDM with Grouped Floodgate E↵ects

Violent Murder Rape Robbery Agg. Ast.
Entry ↵0 0.0130* 0.0003* 0.0010* 0.0121** 0.0077*

(0.1989) (0.1041) (0.1839) (0.0506) (0.1946)
SIL Entry ↵1 (-) 0.0051*** 0.0001** -0.0001 0.0013** 0.0017*

(0.0082) (0.0877) (0.6576) (0.0234) (0.1082)
Exit �0 51.5256*** 27.6088*** 15.5613** 127.8716*** 13.9920***

(0.0034) (0.0000) (0.0554) (0.0001) (0.0038)
Exit �1 -3.2329*** -1.5160*** -1.0864** -7.9605*** -0.9719***

(0.0025) (0.0000) (0.0236) (0.0001) (0.0006)
Exit �2 0.0481*** 0.0193*** 0.0180*** 0.1182*** 0.0161***

(0.0017) (0.0000) (0.0085) (0.0000) (0.0001)
Selection �1 (-) -0.0228 -0.2386 0.0909 0.4953* -0.0708†

(0.7713) (0.6279) (0.6114) (0.1217) (0.2219)
Floodgate �0�1 0.1036*** 0.1471* -0.0122 0.1914*** 0.0438*

(0.0122) (0.1707) (0.8044) (0.0084) (0.1923)
Floodgate �2�4 0.1012** 0.1330* -0.0149 0.1904** 0.0441†

(0.0879) (0.1807) (0.8109) (0.0875) (0.2535)
Floodgate �5�9 0.0445 0.1518† -0.0625 0.1266 -0.0077

(0.6051) (0.2261) (0.4402) (0.5348) (0.8893)
Floodgate �10+ 0.0228 0.3195* -0.0594 -0.0052 -0.0059

(0.8338) (0.1476) (0.5055) (0.9868) (0.9378)
Log-likelihood -7689 -2297 -4025 -6830 -7092
F-statistics 123.6 778.0 61.7 175.0 105.6
Nb. Obs. 1549 1548 1547 1546 1549

Notes: arrest rates (of corresponding crime categories), demographic and welfare controls, state and year

fixed e↵ects and state-specific linear and quadratic time trends are controlled for but not reported. �0, �1,

�2 are coe�cients of the constant, linear and quadratic terms of the exit function (of age). The F-statistics

test for the joint significance of all estimated coe�cients and reject the null (all coe�cients are equal to

zero) in all specifications. Standard errors are clustered at the state level. Two-sided p values are in

parentheses. †, *, **, and *** indicate one-sided statistical significance at the 15, 10, 5, and 1 percent level.
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Table 12: CPDM with Linear Floodgate Trend

Violent Murder Rape Robbery Agg. Ast.
Entry ↵0 0.0138* 0.0003** 0.0009† 0.0120** 0.0083*

(0.1721) (0.0912) (0.2096) (0.0516) (0.1629)
SIL Entry ↵1 0.0050*** 0.0001** -0.0001 0.0014*** 0.0016*

(0.0164) (0.0962) (0.6136) (0.0168) (0.1433)
Exit �0 51.6829*** 27.7278*** 16.3377** 127.9731*** 14.8706***

(0.0030) (0.0000) (0.0453) (0.0001) (0.0015)
Exit �1 -3.2418*** -1.5233*** -1.1334*** -7.9673*** -1.0244***

(0.0022) (0.0000) (0.0198) (0.0001) (0.0002)
Exit �2 0.0482*** 0.0194*** 0.0187*** 0.1183*** 0.0168***

(0.0015) (0.0000) (0.0076) (0.0000) (0.0000)
Selection �1 0.0070 0.0271 0.1633 0.4449* -0.0349

(0.9364) (0.9473) (0.4631) (0.1393) (0.5816)
Floodgate cons. 0.1363*** 0.1445* 0.0153 0.2343*** 0.0735**

(0.0005) (0.1867) (0.7482) (0.0000) (0.0220)
Floodgate slope -0.0154** -0.0058 -0.0150* -0.0112 -0.0147**

(0.0932) (0.5364) (0.1688) (0.6826) (0.0233)
Log-likelihood -7685 -2291 -4022 -6832 -7090
F-statistics 134.7 834.3 38.5 152.9 98.1
Nb. Obs. 1549 1548 1547 1546 1549

Notes: arrest rates (of corresponding crime categories), demographic and welfare controls, state and year

fixed e↵ects and state-specific linear and quadratic time trends are controlled for but not reported. �0, �1,

�2 are coe�cients of the constant, linear and quadratic terms of the exit function (of age). The F-statistics

test for the joint significance of all estimated coe�cients and reject the null (all coe�cients are equal to

zero) in all specifications. Standard errors are clustered at the state level. Two-sided p values are in

parentheses. †, *, **, and *** indicate one-sided statistical significance at the 15, 10, 5, and 1 percent level.
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Table 13: OLS Estimates: CPDM Preferred Specification

Violent Murder Rape Robbery Agg. Ast.
Entry ↵0 0.0125* 0.0002 0.0010† 0.0090** 0.0083*

(0.1258) (0.3141) (0.2291) (0.0951) (0.1153)
SIL Entry ↵1 (-) 0.0032** 0.0002*** -0.0001 0.0010** 0.0011†

(0.0410) (0.0001) (0.5929) (0.0539) (0.2377)
Exit �0 18.8892** 35.5137*** 13.9282† 55.3285*** 6.5723**

(0.0328) (0.0000) (0.2331) (0.0090) (0.0828)
Exit �1 -1.2704** -1.9969*** -0.9334* -3.5189*** -0.5185***

(0.0206) (0.0000) (0.1705) (0.0059) (0.0183)
Exit �2 0.0202*** 0.0261*** 0.0151* 0.0536*** 0.0094***

(0.0114) (0.0000) (0.1053) (0.0031) (0.0022)
Selection �1 (-) 0.0727 0.9867*** 0.2705* 0.2807** -0.0814

(0.3850) (0.0039) (0.1781) (0.0857) (0.3092)
Floodgate �0 0.0636** 0.3219*** -0.0182 0.1179* 0.0289

(0.0894) (0.0003) (0.7077) (0.1230) (0.4013)
Floodgate �1 0.0529* 0.3383*** -0.0129 0.1339*** 0.0120

(0.1372) (0.0001) (0.8265) (0.0104) (0.7102)
Floodgate �2 0.0651† 0.2632*** 0.0170 0.1002 0.0348

(0.2309) (0.0131) (0.7802) (0.3097) (0.3887)
Floodgate �3 0.0468 0.3483*** -0.0589 0.1417† 0.0067

(0.3519) (0.0001) (0.5021) (0.2389) (0.8494)
Floodgate �4 0.0330 0.3017*** -0.0612 0.1021 -0.0023

(0.5540) (0.0012) (0.3384) (0.3958) (0.9537)
Floodgate �5 0.0121 0.2719*** -0.0455 0.0436 -0.0109

(0.8558) (0.0081) (0.5212) (0.7758) (0.8212)
Floodgate �6 0.0230 0.2339*** -0.0526 0.0760 -0.0111

(0.7584) (0.0082) (0.4802) (0.6686) (0.8440)
Floodgate �7 -0.0202 0.3339*** -0.2080** -0.0059 -0.0369

(0.7525) (0.0008) (0.0705) (0.9727) (0.4523)
Floodgate �8 -0.0581 0.1372* -0.1092† 0.0400 -0.1056*

(0.4782) (0.1893) (0.2737) (0.8225) (0.1237)
Floodgate �9+ -0.0752 0.0717 -0.1617* -0.1756 -0.0710

(0.4697) (0.5762) (0.1341) (0.5674) (0.3539)
Nb. Obs. 1549 1548 1547 1546 1549

Notes: arrest rates (of corresponding crime categories), demographic and welfare controls, state and year

fixed e↵ects and state-specific linear and quadratic time trends are controlled for but not reported. �0, �1,

�2 are coe�cients of the constant, linear and quadratic terms of the exit function (of age). �
j

’s measure

the surprise e↵ect in the j

th year after SIL passage. Key coe�cients relevant for testing the deterence

hypothesis are signed in parentheses. Standard errors are clustered at the state level. Two-sided p values

are in parentheses. †, *, **, and *** indicate one-sided statistical significance at the 15, 10, 5, and 1

percent level.
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Table 14: CPDM Dependent Variable: Changes vs. Levels

Change �C
st Level Cs,t+1

Lag Cst 1.1261***
(S.E.) (0.4573)

Entry ↵0 0.0148* 0.0135*
(0.1418) (0.1743)

SIL Entry ↵1 (-) 0.0046** 0.0037**
(0.0208) (0.0394)

Exit �0 51.8624*** 25.7653***
(0.0027) (0.0005)

Exit �1 -3.2551*** -1.7063***
(0.0020) (0.0001)

Exit �2 0.0484*** 0.0270***
(0.0013) (3E-5)

Selection �1 (-) 0.1161* 0.1987**
(0.1697) (0.0242)

Floodgate �0 0.0890** 0.0703*
(0.0537) (0.1158)

Floodgate �1 0.0822** 0.0640*
(0.0669) (0.1428)

Floodgate �2 0.0886* 0.0757†

(0.1531) (0.2219)
Floodgate �3 0.0706† 0.0603

(0.2672) (0.3314)
Floodgate �4 0.0555 0.0427

(0.4294) (0.5287)
Floodgate �5 0.0301 0.0169

(0.7143) (0.8330)
Floodgate �6 0.0355 0.0217

(0.7152) (0.8122)
Floodgate �7 -0.0199 -0.0288

(0.8304) (0.7343)
Floodgate �8 -0.0609 -0.0681

(0.5588) (0.4868)
Floodgate �9+ -0.1172 -0.1099

(0.3825) (0.3815)
Nb. Obs. 1549 1498

Notes: arrest rates (of corresponding crime categories), demographic and welfare controls, state and year

fixed e↵ects and state-specific linear and quadratic time trends are controlled for but not reported. �0, �1,

�2 are coe�cients of the constant, linear and quadratic terms of the exit function (of age). �
j

’s measure

the surprise e↵ect in the j

th year after SIL passage. Key coe�cients relevant for testing the deterence

hypothesis are signed in parentheses. Standard errors are clustered at the state level. Two-sided p values

(except for the lag variable, which shows the standard error) are in parentheses. †, *, **, and *** indicate

one-sided statistical significance at the 15, 10, 5, and 1 percent level.
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variable is the log of crime rates and the demographic controls include arrest rates, state population,

population density, real per capita personal income, income maintenance, unemployment insurance,

and retirement payment for people older than 65. In particular, LM also control for a large set

of race and age group variables (18 groups divided into three races - black, white, and others -

and six age groups - 10-19, 20-29, 30-39, 40-49, 50-59, and 65+). We include the same controls

in column 1 for comparison but later exclude them in our preferred DD specification. Similar to

LM, we find a roughly 8.8% (vs. 5-10% in LM) reduction in violent crimes following SIL passages.

In columns (2) and (3), we keep the same specification but expand the sample to 1999 and 2011,

respectively. Despite having more observations in the sample, we find gradually smaller and less

precisely estimated e↵ects. With this specification and the full sample in (3), we find essentially zero

e↵ect of SILs on violent crimes. We then compare column (4) with (1) by dropping the controversial

race and age controls. We also find small and almost insignificant e↵ects. The last two columns

are our preferred specifications21, where we exclude the race and age controls but instead control

for state-specific linear and quadratic time trends and account for serially correlated errors by

clustering on the state level. We find no e↵ects on both the log and the level of crimes. Overall,

we find that the original LM specification is sensitive to controls, sample lengths, and assumptions

on error structures.

On the other end of the debate, AD study the e↵ects of SILs up to 1999 and employ a “hybrid

model.” In addition to the level shift in a standard DD, they include a trend-break (overall trend

interacted with the SIL dummy) term post-SIL to capture the slope change. They find overall

positive e↵ects of SILs on violent crimes and positive “long run” e↵ects of SILs suggested by

their trend-break term. We argue that, however, in a DD specification, if our state-specific trends

are flexible enough, we should not need the trend-break term. Therefore, in our preferred DD

specification, we include state-specific quadratic time trends that will capture the “inverted-V”

shape argued in this literature. Table 16 presents the results. In column (1), we follow AD and

drop the race and age controls. We find an overall increase of about 7.4% in crimes following

SIL adoptions. We add the trend-break term in column (2) and find similar results to AD. In

(3) and (4), we simply vary the sample length and again find inconsistent results over time. In

(5), we add back the race and age controls for comparison. Finally, (6) and (7) are our preferred

specifications22. We find the opposite e↵ects compared to (1), after controlling for state-specific

linear and quadratic time trends and clustering standard errors.

21Column (6) corresponds to estimates reported in Table 8.
22Column (7) corresponds to estimates reported in Table 8.
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B Data Appendix

B.1 State SIL Passage Years

B.2 Age-Specific Arrest and Crime Rates

We first use the BJS national arrests by age groups and the shape-preserving piecewise cubic hermite

interpolating polynomials to impute age-specific arrests23. Figure 10 presents the fit results for 1980

and 2010 in four crime categories.

To impute age-specific crime rates, let pst be the probability of arrest for criminals in state s and

year t, assuming it does not vary across ages. We also assume that every criminal commits  crimes

each year across states, years and ages. Let C be the number of crimes, A the number of arrests,

and then we have, by definition,
Cast



· pst = Aast, where the subscript a indicates age. Summing

over ages and dividing the two equations, we get
C

ast

 pstP
a
C

ast

 pst

=
AastP
aAast

, and after manipulations,

Cast =
AastP
aAast

Cst. We, however, do not observe arrests on the age-state-year level and have to

rely on an additional assumption that the arrests for each age group as a fraction of the total

arrests do not vary across states, i.e.
AatP
aAat

=
AastP
aAast

. It is plausible that criminals of age 20 in

Pennsylvania do no better or worse than those in North Carolina compared to other age groups in

the same state. Then we arrive at the desired variable, age-specific crime rates, Cast =
AatP
aAat

Cst,

where Aat are the age-specific national arrests imputed from BJS and Cst are the state-year level

crime rates data from UCR. We then let the exit cohort NEx
ast = Cast.

23Specifically, we assume there are no violent crimes comitted by people younger than 5 or older than 74. We then
assume that the mean age point in an age group has the average arrests in the age group. For example, there are
21 murders for age group 10-12 in 1987 and thus we let the 11-year olds have 7 murders in order to construct our
data points. Then we interpolate over these data points using cubic hermite polynomials to impute arrests for each
specific age.
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