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Abstract

This paper studies long term relationships, modeled as repeated games, with restricted feedback. Players
condition current play on summary statistics of past play rather than the entire history, as may be the case in
online markets. Our state strategy equilibrium framework allows for arbitrary restrictions on strategies. We
derive a recursive characterization for the set of equilibrium payoffs similar to that of Abreu, Pearce, and
Stacchetti (1986, 1990) [2,3] for perfect public equilibria and show that the set of equilibrium payoffs is the
largest fixed point of a monotone operator. We use our characterization to derive necessary and sufficient
conditions for efficient trade in a repeated product choice game where costumers condition their purchase
decisions only on the last performance signal.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a market in which a sequence of short lived costumers faces a long lived seller. The
seller is tempted to provide a low quality good, but each transaction generates a signal about
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her performance. If costumers have access to the entire sequence of past performance signals,
then the theory of repeated games (Abreu, Pearce, and Stacchetti [2,3]) allows us to characterize
the equilibrium set and understand the conditions under which the seller’s temptation to provide
a low quality good can be moderated. However, assuming that a short lived costumer has access to
all past signals seems demanding. For example, each party to an online transaction may acquire
some, but not all, information about its counterparty’s past behavior. Another example arises
when costumers are part of a social network of information transmission and the costumer buying
in the previous round can meaningfully convey his trading experience to the costumer buying in
the current round, but the experiences of costumers further back cannot be communicated.

This paper introduces a state strategy equilibrium framework where players condition current
play on summary statistics of past play rather than the entire history. We provide a recursive
characterization for the set of equilibrium payoffs in repeated games with limited feedback in
the form of arbitrary restrictions on strategies. The tools we develop can be useful for deriving
comparative statics results and for solving for the set of equilibrium payoffs in applications.

Our main contribution is to extend the machinery developed by Abreu, Pearce, and Stac-
chetti [2,3] to an alternative equilibrium concept for repeated games, namely state strategy
equilibrium, whereas several other papers have adapted it to richer dynamic settings, includ-
ing games with a payoff relevant state variable (Atkeson [7], Phelan and Stacchetti [31]), games
with private information (Cole and Kocherlakota [13], Fernandes and Phelan [20]), repeated
games with private monitoring (Ely, Hörner, and Olszewski [18], Cherry and Smith [12]), and
games with hyperbolic discounting (Chade, Prokopovych, and Smith [11]). Our state strategy
equilibrium framework builds on the small literature on repeated games with restricted feed-
back, including the OLG model in Bhaskar [9], the repeated prisoners dilemma in Cole and
Kocherlakota [14], and the repeated minority game in Renault, Scarsini, and Tomala [32], by
providing a recursive characterization of the set of equilibrium payoffs for a fairly general class
of games. More recently, Barlo, Carmona, and Sabourian [8] provide a folk theorem in one pe-
riod memory strategies for repeated games with perfect monitoring and rich action sets, Mailath
and Olszewski [28] provide a folk theorem in finite memory strategies for perfect monitoring
games, and Hörner and Olszewski [23] also allow for imperfect monitoring. We complement this
literature by characterizing the set of equilibrium payoffs for fixed discount factor and memory
restrictions (as encoded in the state space).

In Section 2 we present an infinitely repeated game and introduce a state space S such that the
state st ∈ S in period t � 1 is drawn from a distribution Q(·;at−1, st−1), where at−1 ∈ A is the
action profile in period t − 1. A state is simply a summary statistic of past play. A state strategy
for player i ∈ I is a sequence of functions (σ t

i )t�0 such that σ t
i maps states st ∈ S into actions

at
i ∈ Ai . A state strategy equilibrium σ is a perfect equilibrium in state strategies. Our state

strategy equilibrium framework is general enough to encompass repeated games with memory
restrictions (as in Mailath and Morris [27], Cole and Kocherlakota [14], Liu and Skrzypacz [26]),
as well as more general repeated game strategies in which the history of play is summarized by
a publicly observable state variable (as in Doraszelski and Escobar [15], Ekmekci [16]).

In Section 3 we show that state strategy equilibrium payoffs can be analyzed using recursive
techniques similar to those introduced by Abreu, Pearce, and Stacchetti [3]. To this end, we intro-
duce the set E of all functions v that map states into payoff vectors such that there exists a state
strategy equilibrium σ for which vi(s) is player i’s continuation value when play transpires ac-
cording to σ and the initial state is s. Given an arbitrary set W of functions that map states into
payoff vectors, we say that a function v is decomposed on W if there exists a function α that
maps states into pure actions and a continuation value function w selected from W such that, in
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each state s, αi(s) is a best response for player i and results in a payoff of vi(s). We also say that
v is decomposed by α and w ∈ W . It is therefore natural to define the set B(W) of all functions
decomposed on W . We say that W is self-generating if W ⊆ B(W) and prove that self-generating
sets are contained in E. Moreover, E = B(E) and therefore E is the largest self-generating set.
We also show that iterative application of the operator B results in a decreasing sequence of sets
that converge to E.

Our main point of departure from the existing literature is that our objects of interest are
functions that map states into vectors of continuation values (one value per player) and not simply
vectors of continuation values. Our operator thus characterizes the set of all functions that can be
decomposed using continuation value functions in a given set. This construction of continuation
value functions allows us to properly eliminate the dependence of current play on past states.

The tools we develop can also be applied to solve for the set of nonstationary Markov perfect
equilibrium payoffs in dynamic stochastic games as usually studied in applied work (Ericson
and Pakes [19]). In those games, the current state affects not only the transition probabilities but
also the current payoffs. Our recursive characterization in Section 3 directly extends to this more
general setting.

In Section 4 we specialize the model and consider strategies with one period memory. These
strategies condition on a state drawn from a distribution that is parameterized by the actions in
the previous period. Under an absolute continuity restriction on the monitoring technology, we
establish a bang bang result implying that a function v decomposed by α and w ∈ W can also
be decomposed by α and ŵ ∈ W , with ŵ taking values in the extreme points of the convex
full of the range of w. As an application we deduce that an improved monitoring technology
unambiguously expands the set of equilibrium payoffs and thus provide a result similar to that of
Kandori [25] for perfect public equilibria.

In Section 5 we apply our methods to solve for the set of equilibrium payoffs of a repeated
product choice game in which players use strategies with one period memory. In our game, a short
lived seller is tempted to produce low quality goods when facing each of the members of a se-
quence of short lived costumers. As in the existing literature (Abreu, Milgrom, and Pearce [1],
Fudenberg and Levine [22]), introducing a public randomization device facilitates the analysis.
The set of equilibrium payoffs turns out to be surprisingly simple: For discount factors above
a certain threshold, the set of equilibrium payoffs with one period memory coincides with the
payoff set in perfect public equilibria, while below the threshold the unique equilibrium is to
repeat the static Nash equilibrium. Our application shows when and how the dynamics of incen-
tive provision lead to cooperative behavior when the most severe nontrivial memory restriction
on strategies is in place. By fully characterizing the conditions under which this restriction does
not bind, we are able to sharpen a finding of Cole and Kocherlakota [14]. These authors con-
sider a repeated prisoners dilemma and show when the set of equilibrium payoffs with finite
memory strategies approaches the payoff set in strongly symmetric perfect public equilibria. We
further demonstrate that a memory length of one is enough to sustain efficient trade provided the
discount factor is above a given threshold.

2. Model

2.1. Set up

We consider an infinitely repeated game with long and short lived players. Time is discrete
t = 0,1, . . . . The stage game is (I, (Ai)i∈I , (ui)i∈I ), where I is the set of players, Ai is a finite set
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of actions for player i, and ui :A = ∏
i∈I Ai → R is the payoff of player i. Players 1, . . . , n are

long lived and discount period payoffs geometrically at a rate δ ∈ ]0,1[.1 Thus, given a sequence
of action profiles (at )t�0, the discounted payoff of long lived player i is

(1 − δ)
∑
t�0

δtui

(
at

)
,

where at ∈ A is the action profile in period t . Players {n + 1, . . . , |I |} are short lived and maxi-
mize their current payoffs. Following Fudenberg, Kreps, and Maskin [21], a short lived player is
active for one period and a new generation of short lived players enters the game in each period.
We do not exclude the case n = |I | in which all players are long lived. At the beginning of pe-
riod t � 1, a signal yt ∈ Y is drawn from a distribution G(dy;at−1), where Y ⊆ R

N is endowed
with the Borel σ field. This setting corresponds to a standard repeated game of imperfect public
monitoring.

2.2. State strategy equilibria

We add to the repeated game a measurable space of states (S, S) and a transition function
Q(·; s, y) ∈ �(S), where �(S) denotes the set of probability measures on S. The state in pe-
riod t + 1, st+1, is drawn from the distribution Q(·; st , yt ) where st and yt are the state and the
signal in period t . Given the current state st and the current action profile at , the distribution over
next period’s state st+1 takes the form

q
(
M;at , st

) =
∫

Q
(
M; st , y

)
G

(
dy;at

)
,

where M ⊆ S is a measurable set. The state in period 0, s0, is drawn from a distribution
q0 ∈ �(S). We assume that for all measurable sets M ⊆ S, the function (s, y) ∈ S × Y �→
Q(M; s, y) is measurable so that for all a ∈ A, s ∈ S �→ q(M;a, s) is measurable and therefore
for any measurable function w :S → R,

∫
w(st+1)q(dst+1;a, st ) is measurable as a function of

st ∈ S (Stokey and Lucas [35, Theorems 8.1 and 8.2]).
A state strategy for player i is a collection of measurable functions σi = (σ t

i )t�0, with
σ t

i :S → Ai , such that in period t , after observing state st , player i selects action σ t
i (s

t ) ∈ Ai .
The set of state strategies for player i is Σi . A state strategy profile σ = (σi)i∈I is a state strat-
egy equilibrium if for all periods t and all states st , the continuation strategy (σt ′)t ′�t is a Nash
equilibrium of the continuation game. Let EQUIL be the set of state strategy equilibria.

A state strategy equilibrium may not exist. As usually done (Abreu, Pearce, and Stac-
chetti [3]), we assume the stage game possesses a pure strategy Nash equilibrium a∗ ∈ A. It
is not hard to see that repetition of a∗ is a state strategy equilibrium of the infinitely repeated
game. Thus, EQUIL is nonempty.

It is important to point out that whether players know (or recall) the history of states
(s0, . . . , st−1) at the beginning of period t is immaterial because, when using state strategies,
players condition on the current state st so that st fully determines current play and the dis-
tribution over continuation strategies. A state strategy equilibrium can thus be seen as a robust
prediction in the sense that it applies even when players’ recalls of past states are heterogenous
and, in the limit, totally imperfect. In this sense, state strategy equilibria are robust to forgetting.

1 We use the following notation: ]a, b[ = {r ∈ R | a < r < b} denotes the open interval from a to b and ]a, b] = {r ∈
R | a < r � b} denotes the interval open at a but closed at b.
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2.3. Examples

Several models fit into our state strategy equilibrium framework.

Example 1 (Perfect Public Equilibria). If S = ⋃
t�0 Y t , where Y is the set of signals, then the

set of state strategy equilibria coincides with the set of perfect public equilibria (Abreu, Pearce,
and Stacchetti [3]). In a perfect public equilibrium, each player can condition arbitrarily on the
history of public signals but neglects her own private actions.

Example 2 (Finite Memory Equilibria). Consider a model in which players use finite mem-
ory strategies and condition on the last κ � 1 signals yt as in Cole and Kocherlakota [14].
In our model, define the state space S = ⋃κ

k=1 Y k . The state s = (y1, . . . , yk) ∈ S is com-
posed of the last k signals, where y1 is the most recent signal. The transition is deterministic
and given by Q(·; s, y) = 1(·; (y, y1, . . . , yk)) if s = (y1, . . . , yk) ∈ Y k and k � κ − 1 and
Q(·; s, y) = 1(·; (y, y1, . . . , yκ−1)) if s = (y1, . . . , yκ) ∈ Yκ .2 The initial state s0 is an arbi-
trary signal y0 ∈ Y . State strategy equilibria of this model are perfect public equilibria with finite
memory as studied by Mailath and Morris [27] and Cole and Kocherlakota [14].

Example 3 (Markov Perfect Equilibria). Extend our model by assuming that the payoff to player
i ∈ I , ui , depends not only on the current action profile at but also on the current state st . This
model is a dynamic game with payoff relevant public states as studied by Atkeson [7]. A state
strategy equilibrium of this model is a (possibly nonstationary) Markov perfect equilibrium as
typically considered in applied work (Ericson and Pakes [19], Acemoglu and Robinson [4]).
The recursive methods we develop in Section 3 (Theorem 1 and Proposition 1) carry over and
can be used to analyze and compute the set of Markov perfect equilibrium payoffs. In contrast,
Atkeson [7] characterizes the larger set of subgame perfect equilibrium payoffs.

2.4. Equilibrium payoffs

The key aspect of the definition of state strategy equilibria is the irrelevance of past states for
continuation play. We are interested in characterizing the set of equilibrium payoffs. To obtain our
recursive characterization we must therefore consider richer objects than payoff vectors, namely
functions that represent attainable equilibrium payoffs across different states. Working with such
functions allows us to avoid any dependence of continuation play on past states.

For each state s ∈ S and state strategy σ ∈ Σ define the expected discounted payoff of long
lived player i as

Vi(s | σ) = (1 − δ)Eσ

[∑
t�0

δtui

(
at

) ∣∣ s0 = s

]
,

where the probability measure over the set of histories is induced by σ and the initial state is
s0 = s. The number Vi(· | σ) is the continuation value function and the set of equilibrium payoffs
is the set of all such functions obtained from equilibrium strategies:

E = {
v :S → R

n
∣∣ ∃σ ∈ EQUIL such that v(s) = V (s | σ) ∀s ∈ S

}
.

2 Here, 1(·;·) denotes the indicator function so that 1(a;b) = 1 if a = b and 1(a;b) = 0 otherwise.
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Defining v∗ :S → R
n by v∗(s) = (ui(a

∗))ni=1 for all s ∈ S with a∗ being the Nash equilibrium of
the stage game, it follows that v∗ ∈ E. Standard arguments (Stokey and Lucas [35, Theorem 9.2])
can be used to check that functions in E are measurable. Thus E is a nonempty set of measurable
functions.

Because the set E plays a key role in the subsequent analysis, we illustrate its construction
with an example.

Example 4. Consider a prisoners dilemma with payoff matrix

C D

C 1,1 −l,1 + g

D 1 + g,−l 0,0

Both players are long lived and monitoring is perfect. To represent trigger strategies as state
strategies, suppose that the state space is {On,Off} and

st+1 =
{

On if at = (C,C) and st = On,

Off if not.

The initial state is s0 = On. Assume δ � g
1+g

. It is easy to see that there are two state strategy
equilibria. In the first of them, players always defect. In the second equilibrium, players cooperate
when the state is On and defect otherwise. The set of equilibrium payoffs is therefore E =
{(0,0,0,0), (1,1,0,0)} where the first two components of a vector are payoffs in state On and
the last two components are payoffs in state Off.

3. A characterization of the set of equilibrium payoffs

Since the short lived players behave myopically, it is useful to define the set B of all actions
that are consistent with their static best responses:

B =
{
a ∈ A

∣∣ ai ∈ arg max
a′
i∈Ai

ui

(
a′
i , a−i

)
i = n + 1, . . . , |I |

}
.

Let W = {w | w :S → R
n is measurable} be the set of all possible continuation value functions.

We also consider the set Ai = {αi | αi :S → Ai is measurable} of all functions that map states
into actions for player i. We define the operator B, mapping a subset of continuation value func-
tions W ⊆ W to a subset of continuation value functions B(W) ⊆ W , by

B(W) =
{
v ∈ W

∣∣ ∃α ∈ A and w ∈ W such that

(i) α(s) ∈ B ∀s ∈ S,

(ii) vi(s) = (1 − δ)ui

(
α(s)

) + δ

∫
wi

(
s′)q(

ds′;α(s), s
)

= max
ai∈Ai

(1 − δ)ui

(
ai, α−i (s)

) + δ

∫
wi

(
s′)q(

ds′;ai, α−i (s), s
)

i = 1, . . . , n ∀s ∈ S

}
.

The set B(W) is the set of payoff functions that can be enforced in different states given that
arbitrary continuation value functions w can be chosen from W . Constraint (i) ensures that the
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actions prescribed to short lived players are consistent with their myopic behavior. Constraint (ii)
ensures that, given the continuation value function wi , long lived player i is willing to choose the
prescribed action αi(s) and achieves the target payoff vi(s). When v, α, and w satisfy (ii) we say
that v can be decomposed by α and w and when v ∈ B(W), we say that v can be decomposed
on W .

A key difference between our operator B and those previously proposed in the literature to
characterize the set of subgame perfect equilibrium payoffs (Abreu, Pearce, and Stacchetti [2,3],
Atkeson [7], Phelan and Stacchetti [31]) is that the definition of B imposes a continuation value
function w ∈ W that applies uniformly on current states s ∈ S. The fact that the continuation
value function w does not depend on the current state s means, to put it somewhat crudely, that
the way in which incentives are provided in the continuation game does not depend on the current
state s, although, of course, the current state s determines the distribution over next period’s
continuation payoffs w(s ′). This aspect of the construction allows us to ensure that payoffs and
strategies depend solely on the current state, as they must in a state strategy equilibrium.

To see this point more clearly, consider the recursive characterization of subgame perfect equi-
librium payoffs for dynamic games with payoff relevant states in Atkeson [7, pp. 1078–1079].
Adapted to our setting with payoff irrelevant states, his operator B̃, mapping a correspondence
W̃ :S ⇒ R

n to a correspondence B̃(W̃ ) :S ⇒ R
n, is defined by

B̃(W̃ )(s) =
{
v ∈ R

n
∣∣ ∃a ∈ A and w :S → R

n, with w(s) ∈ W̃ (s), such that

(i) a ∈ B,

(ii) vi = (1 − δ)ui(a) + δ

∫
wi

(
s′)q(

ds′;a, s
)

= max
ãi∈Ai

(1 − δ)ui(ãi , a−i ) + δ

∫
wi

(
s′)q(

ds′; ãi , a−i , s
)

i = 1, . . . , n

}
.

Note first that the operator B̃ is defined on correspondences W̃ :S ⇒ R
n, whereas our operator B

is defined on a subset of continuation value functions W ⊆ W . Further note that in contrast to our
operator B the operator B̃ has a product structure. Inspection of B̃(W̃ )(s) shows that there can be
a different continuation value function w :S → W̃ depending on the current state s ∈ S. Because
equilibrium strategies are constructed inductively, the fact that the continuation value function
depends on the current state implies that the equilibrium strategies condition on the entire history
of states (s0, . . . , st ). Hence, while the operator B̃ is useful to characterize the set of subgame
perfect equilibrium payoffs,3 it cannot be used to study equilibrium payoffs and strategies with
restricted feedback.

We proceed to establish the main properties of our operator B. Let W ⊆ W be an arbitrary
set of functions that map states into payoff vectors. We say that W is bounded if there exists
κ > 0 such that |v(s)| � κ for all v ∈ W and all s ∈ S. We say that W ⊆ W is self-generating if
W ⊆ B(W).

3 Strictly speaking, the operator B̃ characterizes the set of subgame perfect equilibrium payoffs only when this pe-

riod’s state st encodes last period’s action profile at−1. More generally, the operator B̃ characterizes subgame perfect
equilibrium payoffs that condition on the history of states (s0, . . . , st ).
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Theorem 1. The following hold:

(i) Let W be self-generating and bounded. Then W ⊆ E;
(ii) E is the largest bounded fixed point of B.

This and all other results in the paper are proven in Appendix A. The first part of the theorem
is the state strategy version of Theorem 1 in Abreu, Pearce, and Stacchetti [3]. It shows that
whenever a set W is contained in the set of all payoffs enforced by continuation values in W , then
W is contained in the set of equilibrium payoffs. The idea behind the second part of the theorem
is that, in equilibrium, continuation payoffs are also equilibrium payoffs. The innovation in the
proof comes from the observation that as our operator avoids any dependence of continuation
play on past and current states, we can construct equilibrium payoffs and strategies that depend
solely on the current state.

Computing E by enumeration is typically infeasible as strategies may be nonstationary. Be-
cause the operator B is monotone (in the sense of inclusion), it readily provides us with an
algorithm to compute its largest fixed point E. Given any bounded set W0 ⊆ W such that
E ⊆ B(W0) ⊆ W0, define the sequence (Wν)ν∈N recursively by Wν = B(Wν). The following
result implies that the sequence (Wν)ν∈N monotonically converges to E.

Proposition 1. Assume that S is countable. Then Wν+1 ⊆ Wν and E = ⋂
ν∈N

Wν .

The proposition shows that by iteratively applying B to a properly chosen initial set, one
can approximate the set of equilibrium payoffs arbitrarily closely. When S is finite, one way to
operationalize the algorithm is by dividing each Wν into a grid and then checking whether B(Wν)

is close to Wν . This approach is straightforward but slow.4

Alternatively, one can add a randomization device to the model and consider the operator
B̄(W) = co(B(W)), where co denotes the convex hull of a set. In period t strategies condition
on the current state st and on the entire history of randomizations (ω0, . . . ,ωt ).5 The operator B̄
is monotone and convex valued and one can use methods similar to Judd, Yeltekin, and Con-
klin [24] to compute its largest fixed point Ē.6 More precisely, the algorithm fixes a number
of directions (λm)Mm=1, where λm ∈ R

n|S|, and iteratively computes an inner (respectively outer)
approximation of B̄(Wν) by finding its extreme points (vm)Mm=1, where vm ∈ R

n|S|, in all direc-
tions and then taking their convex hull (respectively intersecting the corresponding supporting
hyperplanes). This algorithm effectively keeps track of M real valued vectors of length n|S| and
updates them by solving M linear programs with n|S| variables subject to incentive compatibility
constraints.

Sleet and Yeltekin [34] extend Judd, Yeltekin, and Conklin’s [24] algorithm to compute the
set of subgame perfect equilibrium payoffs of dynamic games with payoff relevant states. Our
algorithm is more burdensome than theirs because, as discussed above, the subgame perfect
equilibrium problem has a product structure that allows to update the extreme point vm for direc-
tion λm state by state. That is, the linear program decomposes into |S| smaller programs with n

variables.

4 See Wang [36] and Athey and Bagwell [6] for examples in the context of perfect public equilibria.
5 Later on in the paper, we compute the set of equilibrium payoffs when players condition only on the current realization

of the randomization device.
6 It is immediate that E ⊆ Ē, but the inclusion is strict in general.
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4. Strategies with one period memory

We specialize our model by equating states and signals and assume S = Y ⊆ R
N , st = yt ,

and the transition takes the form q(dy;a) = Q(dy;a) = G(dy;a). Therefore, a state strategy is
actually a finite memory strategy with memory one (henceforth, a one period memory strategy).
One period memory strategies are attractive as they are the most severe memory restriction on
strategies that makes the problem of long term relationships plausible. Bhaskar [9], Renault,
Scarsini, and Tomala [32], and Barlo, Carmona, and Sabourian [8] study alternative properties
of one period memory equilibria.

The key property of one period memory is stated in the following lemma:

Lemma 1. Let W ⊆ W and v ∈ B(W). Let v̂ ∈ W be such that range(v̂) ⊆ range(v). Then
v̂ ∈ B(W).

This lemma shows that in order to characterize B(W) it suffices to characterize the maximal
(in the sense of inclusion) range of the members of B(W). As Example 4 shows, the lemma does
not extend to more general state strategies.7

The bang bang result in the following proposition shows that the operator is fully characterized
by the extremal points of the range of its members:

Proposition 2. Assume that S = Y is a set of positive Lebesgue measure in R
N and that the dis-

tribution of signals G(dy;a) = q(dy;a) is absolutely continuous with respect to the Lebesgue
measure dy in R

N . Let v :S → R
n be decomposed by α ∈ A and w̃ :S → range(w̃). Suppose

there exists a bounded function ŵ ∈ W such that range(w̃) ⊆ co(range(ŵ)) and ŵ ∈ B(W)

for some W ⊆ W . Then there exists w ∈ B(W) such that v is decomposed by α and w,∫
w(s′)q(ds′;a) = ∫

w̃(s′)q(ds′;a) for all a ∈ A, and w(s′) ∈ ext(range(ŵ)) for almost all
s′ ∈ S.

This bang bang result is weaker than that for perfect public equilibria (Abreu, Pearce, and
Stacchetti [3]). The recursive characterization of the set of one period memory equilibrium pay-
offs applies to sets of functions. Because in general no function in W has a range containing
the range of other members of W , it may not be possible to decompose all possible continua-
tion value functions by using continuation values that are extreme points of a set in R

n; instead,
one may have to use continuation value functions with disjoint ranges. This observation is fur-
ther illustrated in Section 5. Before moving on to solve for the set of equilibrium payoffs in an
application, we demonstrate the usefulness of our bang bang result for comparative statics.

4.1. Comparative statics: Improving the monitoring technology

How does an increase in the precision of the signal impact the equilibrium set? Consider two
different monitoring technologies, q(·;a) and q ′(·;a). We say that q ′ is a quasi-garbling of q if
for all a ∈ A

q ′(M;a) =
∫

Φ(x;M)q(dx;a),

7 The function represented by v = (1,1,0,0) belongs to B(E). Yet, while the range of v̂ = (1,1,1,1) is contained in
that of v, v̂ is not contained in B(E) because players cannot cooperate in state Off.
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where Φ :S × S → [0,1] is such that for all s ∈ S, Φ(s; ·) is a probability measure defined on S
(the Borel σ field of S = Y ) and for each measurable set M ⊆ S, the function s ∈ S �→ Φ(s;M)

is measurable (additional details can be found in Section 8.1 in Stokey and Lucas [35]). This
definition corresponds to the natural notion of informativeness introduced by Blackwell [10], in
which a signal distributed according to q provides more “precise” information about the actions
than a signal distributed according to q ′.

Proposition 3. Assume that q(dy;a) is absolutely continuous with respect to the Lebesgue mea-
sure dy in R

N and that q ′ is a quasi-garbling of q . Then B(W ′;q ′) ⊆ B(W ′;q) for all W ′ ⊆ W .

The idea behind the proposition is that if v can be decomposed on W ′ with a monitoring
technology q ′, then it is also possible to decompose v on W ′ with an improved monitoring
technology q . Denoting by E′ the set of equilibrium payoffs with monitoring technology q ′, the
following comparative statics result follows by noting that E′ ⊆ B(E′;q):

Corollary 1. Under the conditions of Proposition 3, E′ ⊆ E.

5. A product choice game

We use our results to solve for the set of equilibrium payoffs of a repeated game with one
period memory strategies. While we study a product choice game between a long lived seller and
a sequence of short lived costumers, our methods and results extend to other settings such as the
strongly symmetric public perfect equilibria of a repeated prisoners dilemma (Abreu, Milgrom,
and Pearce [1], Cole and Kocherlakota [14]).

Our product choice game has the following payoffs:

h l

H ū,1 0,−1

L ū + g,−1 u,1

where 0 < u < ū and g > 0. The seller (row player) is long lived and customers (column player)
are short lived. The seller can exert high (H ) or low (L) effort and the costumer can buy a
high (h) or a low (l) quality product. Effort is costly for the seller. The customer prefers to buy
a high quality product if the seller exerts effort, otherwise the customer prefers the low quality
product. The unique Nash equilibrium of the one shot game is (L, l) and attains the minimax
value for both players.

We study an infinitely repeated version of the game. Once the action profile at in period t has
been selected, xt+1 ∈ {0,1} is drawn from the distribution

q̂
(
1;at

) =
⎧⎨
⎩

p if at = (H,h),

q if at = (H, l),

r if at = (L, l) or at = (L,h),

where 1 � p � q > r � 0 and q̂(0;at ) = 1 − q̂(1;at ). We think of xt as being a signal about the
performance of the seller. As in the received literature (Abreu, Milgrom, and Pearce [1], Fuden-
berg and Levine [22]), we simplify the analysis by allowing players to use a public randomization
device ωt ∈ [0,1] drawn from a uniform distribution. We define the signal yt = xt + ωt ∈ [0,2],
with x0 = 0. Denote by G(dy;at−1) the distribution function of the random variable yt condi-
tional on at−1. Observe that knowing yt is equivalent to knowing its components xt and ωt , thus,
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from the perspective of equilibrium behavior, whether players condition on yt or on (xt ,ωt ) is
immaterial. We write Y = [0,2].

5.1. Perfect public equilibria

As Example 1 shows, a perfect public equilibrium can be seen as a state strategy equilibrium
in which the state encodes the entire history of past signals. The tools introduced by Abreu,
Pearce, and Stacchetti [3] can be applied to characterize the set of equilibrium payoffs in this
repeated game. Let Π∞ ⊆ R be the set of perfect public equilibrium payoffs for the seller.

Proposition 4. Let δ∞ = g
(ū−u)(p−r)+pg

and v∗ = ū − (1 − p)
g

p−r
. Then

Π∞ =
{ [u,v∗] if δ � δ∞,

{u} if not.

When δ < δ∞, the unique equilibrium is to repeat the static Nash equilibrium (L, l). When
δ � δ∞, the optimal equilibrium is in trigger strategies. In the first period, players play (H,h).
In period t � 1, players randomize, permanently playing (L, l) with positive probability after
xt = 0.

5.2. One period memory equilibria

It is natural to assume that costumers do not have access to the entire history of past sig-
nals. We thus apply our general results to investigate the equilibrium payoffs when players use
strategies that depend solely on the current signal yt or, in other words, players use strategies
conditioning only on the current realizations of the monitoring signal xt and the randomization
device ωt . This assumption contrasts with our discussion of Judd, Yeltekin, and Conklin’s [24]
algorithm in Section 3 where we allowed players to condition play on the entire history of re-
alizations of the randomization device. In the context of the product choice game, the current
assumption ensures analytic tractability and is perhaps also more appealing from a conceptual
viewpoint.

We consider the following condition that restricts the informativeness of the monitoring tech-
nology:

Condition 1. u

q−r
� g

p−r
.

The relevance of this sort of condition to attain efficient economic transactions with memory
restrictions has also been stressed by Cole and Kocherlakota [14] and Liu and Skrzypacz [26]. In
contrast to these papers, we do not allow strategies to have arbitrarily long memory, but explore
how Condition 1 allows efficient economic transactions when strategies are restricted to have one
period memory.

Let Π1 ⊆ R be the set of equilibrium payoffs for the seller that can be attained with one period
memory strategies. The main result of this section is the following:

Proposition 5. Let δ1 = g
(p−r)(ū−u+g)

. Then

Π1 =
{ [u,v∗] if Condition 1 holds and δ � δ1,

{u} if not.
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By stating necessary and sufficient conditions for v ∈ R to be an equilibrium payoff, this
proposition fully characterizes the set of equilibrium payoffs when strategies are restricted to
have one period memory. It shows that this restriction is not binding in terms of what payoffs can
be achieved if δ � δ1. In doing so it refines Cole and Kocherlakota’s [14] finding by showing that
in this case arbitrarily long memory is not needed to obtain the full set of perfect public equi-
librium payoffs. When r > 0, δ1 > δ∞ and there is a range of discount factors for which the set
of perfect public equilibrium payoffs strictly contains the set of one period memory equilibrium
payoffs, even when Condition 1 holds.

Proposition 5 illustrates the usefulness of our recursive characterization. Proving that v ∈
[u,v∗] is an equilibrium payoff when δ is sufficiently large can be done by direct albeit tedious
calculation without using our tools (as shown by Cole and Kocherlakota [14]). However, show-
ing that a payoff v ∈ [u,v∗] cannot be attained when δ < δ1 is not obvious and our recursive
characterization allows us simplify this task by focusing on the dynamic programming problem
of the seller.

To prove Proposition 5, we employ the tools introduced in the previous sections. Note that the
state space is S = [0,2], the set E contains functions of the form v : [0,2] → R and the domain
of the operator B is the set of subsets of measurable functions v : [0,2] → R. Since the public
randomization device is drawn from a uniform distribution, the realizations of yt are absolutely
continuous and Proposition 2 allows us to characterize the set of functions B(W) by the extreme
points of the convex hull of the range of its members. We therefore simplify the problem by
representing a set W containing measurable functions w : [0,2] → R by {(w,w) ∈ R

2 | (w,w) =
ext(co(range(w))), w ∈ W }.

Given w ∈ R
2 and ψ1,ψ0 ∈ [0,1], define

V1(ψ1,ψ0,w) = (1 − δ)ū + δ
(
w + (

pψ1 + (1 − p)ψ0
)
(w − w)

)
,

V0(ψ1,ψ0,w) = (1 − δ)u + δ
(
w + (

rψ1 + (1 − r)ψ0
)
(w − w)

)
.

V0(ψ1,ψ0,w) is the expected payoff if the current action profile is (L, l) and the continuation
values are given by the vector w. ψ1 and ψ0 are the cutoffs for the randomization in the next
period; below these cutoffs the low continuation value w is applied. V1(ψ1,ψ0,w) is defined
analogously if the current action profile is (H,h). A vector w = (w,w) ∈ R

2, with w < w, may
be used to enforce several profiles v = (v, v̄) ∈ R

2. Profiles with v = v̄ are not suitable to provide
incentives for the seller to choose H . The set of all enforceable profiles with v̄ > v is

Φ(w) = {
v ∈ R2

∣∣ v̄ = V1(ψ1,ψ0,w)

� (1 − δ)(ū + g) + δ
(
w + (

rψ1 + (1 − r)ψ0
)
(w − w)

)
,

v = V0(ψ1,ψ0,w) � δ
(
w + (

qψ1 + (1 − q)ψ0
)
(w − w)

)
ψ1,ψ0 ∈ [0,1]}.

Φ(w) is nonempty if and only if u

q−r
� g

p−r
and w ∈ C , where

C =
{
w ∈ R

2
∣∣ w − w � 1 − δ

δ

g

p − r

}
.

We deduce that E = {(0,0)} when Condition 1 does not hold.
We characterize Π1 when Condition 1 holds. This characterization is derived in two steps.

Lemma 2. Suppose that δ < δ1. Then the unique equilibrium is to repeat the static Nash equilib-
rium (L, l).
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The idea behind this lemma is that to provide incentives, continuation values after xt = 1
must be sufficiently large compared to continuation values after x0 = 0. But the distribution over
continuation values cannot depend on the current signal (or more generally on the current state)
and this puts an upper bound on how much variation we can impose on continuation values. The
proof of the lemma shows that these two bounds are not compatible when δ < δ1.

Lemma 3. Let η = (1 − δ)(ū−u+g), v = (v∗ −η, v∗), and W = {v}. If δ � δ1 and Condition 1
holds, then W is self-generating.

The lemma implies that {v∗, u} ∈ Π1 when δ � δ1. Proposition 5 follows by showing that
elements in between u and v∗ can also be attained in an equilibrium with one period memory.
Details are given in Appendix A.

From Lemma 3 we can construct the equilibrium strategies sustaining v∗ as

σ t
(
xt ,ωt

) =
{

(H,h) if t = 0 or xt = 1 or [xt = 0, ωt � g
δ(p−r)(ū−u+g)

],
(L, l) if not.

This strategy profile is stationary. When xt = 1, players play (H,h) with probability 1 as in
the infinite memory case. When xt = 0, players choose (L, l) with probability g

δ(p−r)(ū−u+g)

which is strictly greater than the probability with which permanent play of (L, l) is triggered
in the infinite memory case. This is so because in the former case the punishment consists of
only one period of defection and therefore it must be carried out more often to provide incen-
tives to produce high quality products. In other words, with infinite memory the continuation
value in the punishment phase is harsher, but with finite memory punishment is triggered more
often.

The public randomization device not only simplifies the analysis of the model but also plays
a substantive role. Without it, the incentive constraint enforcing (L, l) imposes an upper bound
on the discount factor δ, so that (H,h) can be enforced only for intermediate values of the
discount factor. Moreover, in our model, unless u is sufficiently large or q is sufficiently larger
than r , efficient transactions cannot be attained with stationary strategies and no randomization
device regardless of the discount factor (Mailath and Samuelson [29, Section 7.2.2]).8 As in
Ellison’s [17] community enforcement model, the public randomization device allows us to fine-
tune the severity of the punishment so that the incentive constraint enforcing the punishment
profile (L, l) does not bind and payoffs in [u,v∗] can be attained.

6. Concluding remarks

We ask how restrictions on strategies shape the extent to which players can use long term rela-
tionships to align private and public incentives. We show that the methods introduced by Abreu,
Pearce, and Stacchetti [2,3] can be adapted to characterize equilibrium payoffs in a state strategy
equilibrium framework. Our recursive characterization can be useful for deriving comparative
statics results and for solving for the set of equilibrium payoffs in applications.

8 It can also be shown the set of equilibrium payoffs with stationary strategies and a randomization device is strictly
contained in Π1 and contains u as an isolated point. Observe that if strategies can condition on the entire history of
realizations of the randomization device, this result does not hold as the initial randomization can be used to convexify
the set of equilibrium payoffs.
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Private monitoring. While our results apply to repeated games of public monitoring, they also
have implications for repeated games of private monitoring. Mailath and Morris [27] show that
strict perfect public equilibria in finite memory strategies exhaust the set of equilibria that are
robust to private monitoring. The set of equilibrium payoffs in one period memory strategies char-
acterized in Proposition 5 is a lower bound for the set of perfect public equilibrium payoffs that
survives the introduction of a tiny amount of private monitoring. Phelan and Skrzypacz [30] pro-
vide necessary and sufficient conditions for a state strategy profile to be a sequential equilibrium
of a private monitoring game and use their methods to check whether tit-for-tat is a sequen-
tial equilibrium in a private monitoring repeated prisoners dilemma. The results presented in
Section 5 suggest that by introducing a randomization device, tit-for-tat may be an equilibrium
without imposing an upper bound on the discount factor.

From one period to finite memory strategies. While our recursive characterization in Section 3
covers general state strategy equilibria, our applications in Sections 4 and 5 leave a gap between
one period and finite memory strategies. Our proofs of Propositions 3 and 5 make use of the bang
bang result in Proposition 2, which itself is an implication of Lemma 1. Extending Proposition 2
to more general strategies with finite memory length κ seems promising (we have not been able
to come up with a counterexample) but difficult. First, Lemma 1 need not hold. Second, the bang
bang result one could presumably obtain is a conditional result in the sense that given the last κ

signals, (y1, . . . , yκ), continuation values, as functions of the next signal, yκ+1, can be taken from
extreme points of convex sets.9 Such a result would at most simplify the problem by allowing us
to manipulate continuation value functions that depend arbitrarily on (y2, . . . , yκ) but in simpler
“bang bang” way on yκ+1. But this simplification is not enough to extend Propositions 3 and 5
because the arbitrary dependance of continuation values on all but the last signal renders the
operator intractable. We leave these explorations for future research.

Appendix A. Proofs

Proof of Theorem 1. Part (i). We prove the stronger result that B(W) ⊆ E. For each v ∈ B(W),
we can find αv ∈ A and wv ∈ W such that for all s ∈ S, α(s) ∈ B and

vi(s) = (1 − δ)ui

(
αv(s)

) + δ

∫
wv

i

(
s′)q(

ds′;αv(s), s
)

= max
ai∈Ai

(1 − δ)ui

(
ai, α

v−i (s)
) + δ

∫
wv

i

(
s′)q(

ds′;ai, α
v−i (s), s

)
.

Consider an arbitrary v0 ∈ B(W). Define inductively vt+1 = wvt
for all t � 0. This is well de-

fined since vt ∈ W ⊆ B(W) and therefore vt+1 = wvt ∈ W . Consider the state strategy profile
σ = (σ t )t�0 defined by σ t (st ) = αvt

(st ). This profile is a state strategy equilibrium. Indeed,
σi ∈ Σi and given s0, . . . , st , player i’s continuation value is given by a function vt+1

i (st+1),
which does not depend on s0, . . . , st . Therefore, provided i’s rivals play σ t

−i (s
t ), player i has

incentives to play σ t
i (s

t ). Moreover, σ results in a value of v0. Indeed, let pt
σ,s(·) be the proba-

bility measure induced by the random variable st given the strategy σ , conditional on s0 = s. By
construction, for all T � 1 we can write

9 When the memory length is κ , our recursive characterization effectively has sκ = (y1, . . . , yκ−1, yκ ) as state vari-

able, see Example 2. Combining it with Lyapunov’s theorem requires conditioning on (y1, . . . , yκ ).
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v0(s) = (1 − δ)

T −1∑
t=0

δt
Ept

σ,s

[
u
(
σ t

(
st

))] + δT
EpT

σ,s

[
vT

(
sT

)]
.

But W is bounded and thus (vT )T �1 is a sequence of uniformly bounded functions. Taking the
limit, we deduce that

v0(s) = (1 − δ)
∑
t�0

δt
Ept

σ,s

[
u
(
σ t

(
st

))]
.

Part (ii). We prove that E = B(E). The fact that E is the largest bounded fixed point then
follows from part (i) and the fact that period payoffs are bounded.

We first show that E ⊆ B(E). Let v ∈ E and consider the corresponding equilibrium profile
σ = (σi)i∈I . Define w :S → R by

w(s) = V
(
s
∣∣ (

σ t
)
t�1

) = (1 − δ)E

[∑
t�1

δt−1u
(
at

) ∣∣ s1 = s,
(
σ t

)
t�1

]
,

where the expectation is with respect to the unique probability measure induced on the set of
histories by (σ t )t�1 conditional on s1 = s. By construction, the measurable function w belongs
to E. Define α ∈ A by α(s) = σ 0(s). Clearly,

vi(s) = (1 − δ)ui

(
α(s)

) + δ

∫
wi

(
s′)q(

ds′;α(s), s
)

= max
ai∈Ai

(1 − δ)ui

(
ai, α−i (s)

) + δ

∫
wi

(
s′)q(

ds′;ai, α−i (s), s
)
.

This proves that v ∈ B(E).
Let v ∈ B(E). By definition, there exists αv ∈ A and wv ∈ E such that

vi(s) = (1 − δ)ui

(
αv(s)

) + δ

∫
wv

i

(
s′)q(

ds′;αv(s), s
)

= max
ai∈Ai

(1 − δ)ui

(
ai, α

v−i (s)
) + δ

∫
wv

i

(
s′)q(

ds′;ai, α
v−i (s), s

)
.

Let σ̃ = (σ̃t )t�0 be the state strategy profile generating the payoff wv ∈ E. Define the following
state strategy

σ t (s) =
{

αv(s) if t = 0,

σ̃ t−1(s) if t � 1.

This defines a state strategy equilibrium and vi(s) = Vi(s | σ) so that v ∈ E. �
Proof of Proposition 1. Since W1 = B(W0) ⊆ W0, it follows that Wn+1 ⊆ Wn for all n. More-
over, E ⊆ Wn for all n and therefore E ⊆ ⋂

n∈N
Wn. To prove that

⋂
n∈N

Wn ⊆ E, we prove
that

⋂
n∈N

Wn is self-generating. We observe that
⋂

n∈N
Wn contains only measurable functions

as each Wn, by definition, contains only measurable functions. To prove that
⋂

n∈N
Wn is self-

generating, let v ∈ ⋂
n∈N

Wn. Then, for all n � 1 there exists αn ∈ A and wn ∈ Wn−1 such that
for all s ∈ S, αn(s) ∈ B , and

vi(s) = (1 − δ)ui

(
αn(s)

) + δ

∫
wn,i

(
s′)q(

ds′;αn(s), s
)

= max (1 − δ)ui

(
ai, αn,−i (s)

) + δ

∫
wn,i

(
s′)q(

ds′;ai, αn,−i (s), s
)
.

ai∈Ai
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Note that (αn)n∈N and (wn)n∈N have pointwise converging subsequences as both are contained
in the countable product of compact metric spaces (recall that A is finite, S is countable,
and W0 is bounded). Without loss of generality, we assume that (αn)n∈N and (wn)n∈N con-
verge and denote by α and w the limit functions. By passing to the limit, it is easy to see
that

vi(s) = (1 − δ)ui

(
α(s)

) + δ

∫
wi

(
s′)q(

ds′;α(s), s
)

= max
ai∈Ai

(1 − δ)ui

(
ai, α−i (s)

) + δ

∫
wi

(
s′)q(

ds′;ai, α−i (s), s
)
.

Since w ∈ ⋂
n∈N

Wn, it follows that v ∈ B(
⋂

n∈N
Wn). In other words,

⋂
n∈N

Wn is self-
generating and thus contained in E. �
Proof of Lemma 1. Let α ∈ A and w ∈ W decompose v. Let V :A → R be defined by V (a) =
(1 − δ)u(a) + δ

∫
w(s′)q(ds′;a) for all a ∈ A. Define the set valued map X :S ⇒ A by

X(s) = {
a ∈ B

∣∣ v̂(s) = V (a)
} ∩

(
n⋂

i=1

{
a ∈ A

∣∣ Vi(a) = max
a′
i∈Ai

Vi

(
a′
i , a−i

)})
.

Since range(v̂) ⊆ range(v), for all s ∈ S there exists ŝ ∈ S such that v̂(s) = v(ŝ) = V (α(ŝ)). As
v is decomposed by α and w, for all i = 1, . . . , n, the function

ai ∈ Ai �→ Vi

(
ai, α−i (ŝ)

) = (1 − δ)ui

(
ai, α−i (ŝ)

) + δ

∫
w

(
s′)q(

ds′, ai, α−i (ŝ)
)

is maximized at ai = αi(ŝ). It follows that for all s ∈ S, there exists a = α(ŝ) ∈ B such that
a ∈ X(s) and therefore X(s) is nonempty.

We now prove that X :S ⇒ A is a weakly measurable correspondence (Definition 18.1 in
Aliprantis and Border [5]). To see this, define the correspondence

ϕ0(s) = {
a ∈ B

∣∣ v̂(s) = V (a)
}

and observe that X can be obtained as the intersection of ϕ0 and constant correspondences.
Since a constant correspondence is weakly measurable, proving the weak measurability of X

amounts to proving the weak measurability of ϕ0 (Aliprantis and Border [5, Lemma 18.4, part 3]).
Let T ⊆ A and let us prove that ϕl

0(T ) = {s ∈ S | ϕ0(s) ∩ T �= ∅} is a measurable set. Writ-
ing

ϕl
0(T ) =

⋃
a∈T

{
s ∈ S

∣∣ a ∈ ϕ0(s)
} =

⋃
a∈T

{
s ∈ S

∣∣ a ∈ B, v̂(s) = V (a)
} =

⋃
a∈B∩T

v̂−1(V (a)
)

the result is deduced by noting that the last expression, being the finite union of measurable sets,
is measurable.

Since A is a Polish space and the correspondence X :S ⇒ A is weakly measurable and has
nonempty closed values, the Kuratowski–Ryll–Nardzewski Selection theorem (Aliprantis and
Border [5, Theorem 18.13]) implies that X has a measurable selection: there exists a measur-
able function α̂ :S → A such that α̂(s) ∈ X(s) for all s ∈ S. By construction of X, v̂ can be
decomposed by α̂ ∈ A and w ∈ W . Thus, v̂ ∈ B(W). �
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Proof of Proposition 2. Define

Γ̂ =
{
w ∈ L∞(

S,R
n
) ∣∣ α is enforced by w ∈ W ,

w :S → co
(
range(ŵ)

)
,

∫
w

(
s′)q(

ds′;a) =
∫

w̃
(
s′)q(

ds′;a) ∀a ∈ A

}
,

where co(A) is the convex hull of a set A ⊆ R
n. The set Γ̂ is nonempty and convex. Observe that

ŵ ∈ B(W) is bounded and its range, range(ŵ), is finite. Indeed, there exists α∗ ∈ A and w∗ ∈ W

such that for all s ∈ S, ŵ(s) = (1 − δ)u(α∗(s)) + δ
∫

w∗(s′)q(ds′;α(s)). Further, since we are
restricting attention to pure strategies and there is a finite number of pure strategies, the set

range(ŵ) ⊆
⋃
a∈A

{
(1 − δ)u(a) + δ

∫
w∗(s′)q(

ds′;a)}

is finite. Therefore, co(range(ŵ)) is a compact set (Rockafellar [33, Corollary 2.3.1]). It then
follows that Γ̂ is also weak∗ compact and the Krein–Milman theorem (Aliprantis and Border [5,
Theorem 7.68]) implies the existence of an extreme point w ∈ Γ̂ .10 We prove that w has all the
properties stated in the proposition.

Claim 1. For almost all s′ ∈ S, w(s′) is an extreme point of co(range(ŵ)).

To prove the claim, suppose otherwise. Then there exists a set of positive measure K ⊂ S

such that for all s′ ∈ K , w(s′) is not an extreme point of co(range(ŵ)). Then, there exist
w′,w′′ ∈ L∞(S,R

n) with w′(s′),w′′(s′) ∈ co(range(ŵ)) such that w = 1
2 (w′ +w′′) and w′ �= w′′

for a positive measure set of states. Define w∗ = 1
2 (w′ − w′′). We define the vector valued mea-

sure μ as μ(S′) = (
∫
S′ w∗

i (s
′)q(ds′;a′))i=1,...,n, a′∈A. Since q(·;a′) is absolutely continuous, μ is

a nonatomic measure. Therefore, Lyaponuv’s convexity theorem (Aliprantis and Border [5, The-
orem 13.33]) implies that {μ(S′) | S′ is measurable} is convex. Therefore, there exists S′ such
that μ(S′) = 1

2μ(S).
Define

w′(s′) =
{

w′(s′) if s′ ∈ S′,
w′′(s′) if not,

and

w′′(s′) =
{

w′′(s′) if s′ ∈ S′,
w′(s′) if not.

Note that w′(s′),w′′(s′) ∈ co(range(ŵ)). By rearranging terms, it follows that∫
S

w′(s′)q(
ds′;a′) =

∫
S′

w′(s′)q(
ds′;a′) +

∫
S\S′

w′′(s′)q(
ds′;a) =

∫
S

w
(
s′)q(

ds′;a′)

so that w′ ∈ Γ̂ . The same calculation shows that w′′ ∈ Γ̂ . But w = 1
2 (w′ + w′′) with w′ �= w′′

on a set of positive measure. This contradicts the fact that w is an extreme point of Γ̂ . This
establishes the claim.

10 The space L∞(S,R
n) is the dual of L1(S,R

n). The weak∗ topology on L∞(S,R
n) is the weakest topology such

that for all g ∈ L1(S,R
n), the linear function f ∈ L∞(S,R

n) → ∫
f (s) · g(s) ds is continuous.
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The conclude the proof of the proposition, note that range(w) ⊆ range(ŵ). Lemma 1 then
implies that w ∈ B(W). �
Proof of Proposition 3. Suppose that v ∈ B(W ′, q ′) and let w′ ∈ W ′ and α ∈ A be such that for
all s ∈ S, α(s) ∈ B and

vi(s) = (1 − δ)ui

(
α(s)

) + δ

∫
w′

i

(
s′)q ′(ds′;α(s)

)
= max

ai∈Ai

(1 − δ)ui

(
ai, α−i (s)

) + δ

∫
w′

i

(
s′)q ′(ds′;ai, α−i (s)

)
for all i = 1, . . . , n. Define w :S → R

n by

w(x) =
∫

w′(s′)Φ(
x;ds′).

This function is measurable as a consequence of the unnumbered corollary on p. 215 of Stokey
and Lucas [35]. Moreover, Theorem 8.3 in Stokey and Lucas [35] implies that for all a ∈ A∫

w′(s′)q ′(ds′;a) =
∫

w(x)q(dx;a).

It then follows that v is decomposed by α and w given the absolutely continuous monitoring
technology q . Finally, note that for each x ∈ S, w(x) ∈ co(range(w′)), with w′ ∈ W ′. From
Proposition 2, it follows that there exists w ∈ W ′ such that v is decomposed by α and w given q .
This proves that v ∈ B(W ′, q). �
Proof of Lemma 2. Consider any v ∈ E ∩ C . In particular, v < v̄ and therefore there exists
w ∈ E ∩ C and ψ1,ψ0 ∈ [0,1] such that v = V (ψ1,ψ0,w). Therefore

v̄ − v � (1 − δ)(ū − u) + δ(p − r) sup
w∈E∩C

(w − w).

This implies that supv∈E∩C (v̄ − v) � (1 − δ)(ū − u) + δ(p − r) supw∈E∩C (w − w) and conse-

quently, supv∈E∩C (v̄ − v) � (1−δ)(ū−u)

1−δ(p−r)
. By definition of C , infv∈E∩C (v̄ − v) � 1−δ

δ
g

p−r
. We thus

deduce that 1−δ
δ

g
p−r

� (1−δ)(ū−u)

1−δ(p−r)
, a condition that contradicts δ < δ1. Thus, E ∩ C is empty and

consequently no element of E can enforce (H,h). �
Proof of Lemma 3. We prove that W ⊆ B(W). Since η > 0, to prove that v ∈ B(W) we need to
show that there exist ψ0,ψ1 ∈ [0,1] such that

v∗ = (1 − δ)ū + δ
(
v∗ − η + η

(
pψ1 + (1 − p)ψ0

))
� (1 − δ)(ū + g) + δ

(
v∗ − η + η

(
qψ1 + (1 − q)ψ0

))
,

v∗ − η = (1 − δ)u + δ
(
v∗ − η + η

(
rψ1 + (1 − r)ψ0

))
� δ

(
v∗ − η + η

(
qψ1 + (1 − q)ψ0

))
.

Take ψ1 = 1 and ψ0 = 1− 1−δ
δ

g
η(p−r)

� 0 and let us verify that the conditions above are satisfied.

Since ψ1 −ψ0 = 1−δ
δ

g
η(p−r)

it follows that both incentive constraints hold. It is therefore enough
to verify that the two equalities hold. To see the first equality note that
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(1 − δ)ū + δ
(
v∗ − η + η

(
pψ1 + (1 − p)ψ0

)) = (1 − δ)ū + δv∗ − δη(1 − p)(1 − ψ0)

= δv∗ + (1 − δ)

(
ū − (1 − p)

g

p − r

)
= v∗.

The second equality follows analogously. �
Proof of Proposition 5. It immediately follows from Lemma 3 that u and v∗ are equilibrium
payoffs when δ � δ1. We claim that

⋃
n�0 In = ]ū, v∗] where In = (1 − δn)u + δn[v∗ − η, v∗].

Indeed, In ∩ In−1 �= ∅, each In is an interval, and inf{v ∈ In} → u as n → ∞. Therefore, for any
v ∈ ]u,v∗], we can find n and λ ∈ [0,1] such that v = (1 − δn)u + δn(λ(v∗ − η) + (1 − λ)v∗).
Consider the following strategies: During the first n − 1 periods play (L, l), in period n play
(L, l) with probability λ and play (H,h) with probability (1 − λ), for t > n, play according to
the stationary strategies sustaining (v∗ − η, v∗) ∈ E. This strategy has one period memory and
prescribes optimal behavior after each history. Moreover, by construction, the expected payoff
for the long lives player equals v = (1 − δn)u + δn(λ(v∗ − η) + (1 − λ)v∗). �
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