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Abstract
The paper extends the Revelation Principle to sequential common agency games

under asymmetric information. Each period a principal contracts with a common
agent. An implemented allocation is observed by other principals. Depending on
whether the message reported by the agent to a principal is observed by other
principals, we distinguish between private and public communication. Under pri-
vate communication, the Revelation Principle applies, but optimal contracts are
stochastic. However, the dimension of the support of an equilibrium contract does
not exceed the number of types that achieve this stage with a positive probability.
Under public communication, the reporting strategy of agent is stochastic, but the
true type is reported with a positive probability. We demonstrate that the two
regimes are equivalent in that they result in the same distribution of allocations.
The results hold when the agent�s type is not persistent, or the outcome of the
contract is observed with noise.
Keywords: common agency, sequential mechanisms, dymanic contracts, adverse

selection. Revelation Principle.
JEL Codes: C73, D82.

1 Introduction

In this paper we derive the Revelation Principle for sequential common agency games. We

analyze a situation in which a number of principals contract sequentially with an agent
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under asymmetric information about agent�s preferences. At each stage one principal

o¤ers a contract to the agent. The implementation of the contract results in allocation

which is observed by the other principals. An allocation is payo¤ relevant for all the

principals and the agent, and may a¤ect the feasible sets of allocations of subsequent

principals.

The framework we study applies to many economic environments. Examples include:

(i) non-exclusive credit, where information sharing between creditors a¤ects the amount

of credit and the probability of debt repayment (Padilla and Pagano (1997), Pagano and

Jappelli (1993), Sharpe (1990)); (ii) interaction of public and private health insurance

programs, which a¤ects the choice of the insured and the terms of contract of the private

insurer (Culter and Gruber (1996)); (iii) retail industries such as supermarkets, airlines,

credit cards, where the information about the purchase history of customers allows sellers

to o¤er personalized deals (Acquisti and Varian (2002), Chen and Zhang (2001), Taylor

(2002), Villas-Boas (1999)); and (iv) certi�cation intermediaries, where information dis-

closure by an intermediary a¤ects the size and the distribution of the surplus between

the buyer and the seller (Lizzeri (1999), Peyrache and Quesada (2004)), (v) interaction

between �rm�s �nancing and production decisions, where the choice of �nancial structure

a¤ects �rm�s position vis-a-vis its competitors (Gertner, Gibbons and Scharfstein (1988),

Bhattacharya and Ritter (1983)).

Although the above applications provide useful insights, in most of them either there is

no strategic role for principals, due to competition assumption, for example, or the analysis

is restricted to very particular institutional arrangements such as linear contracts. As a

result, the predictions are very sensitive to assumptions of a particular model.

One possible reason for the lack of a uni�ed, general approach is that the Revelation

Principle1 widely used to study contractual relationships under asymmetric information,

may not be valid in the environments with more than one principal. The standard Rev-

elation Principle states that when a principal contracts with agents under asymmetric

information about agents�preferences, any contract can be described by a direct incentive

compatible mechanism in which the terms of the contracts are based on the agent�s report

on its private information, and the agent has incentives to report the information thruth-

1The revelation principle for the environment in which a principal contracts with agents who have
private information has been developed by Gibbard (1973), Green and La¤ont (1977), Dasgupta, Ham-
mond and Maskin (1979), and Myerson (1979). Myerson (1982) extends the revelation principle to the
situations when the principal also faces moral hazard problems, in addition to asymmetries of information.
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fully. The practical application of this result is that the optimal contract can be found

by the means of optimal programming subject to incentive compatibility constraints.

Extending the Revelation Principle to games with many principals can be problem-

atic. The literature started by analyzing common agency games in which the principals

o¤er contracts simultaneously to the agent(s). Epstein and Peters (1999) characterize the

universal message space that can be used to characterize any indirect mechanism. How-

ever, this message space may not be practical. The reason is that in such situation each

principal would like to make its contract dependent on the contracts o¤ered by the other

principals, leading to the problem of in�nite regress. As a result the simplest message

space needed to describe the mechanisms must be rather rich, and is hard to work with.

When principals o¤er contracts in a sequential manner, the problem of in�nite regress

does not arise: Once a principal and an agent implement a contract, the principal cannot

improve her payo¤ by requesting information about subsequent o¤ers.

This paper is related to two other recent papers in the literature. When the outcome of

contracting between a principal and an agent is not observed by the other principals, Pavan

and Calzolari (2006) show that the equilibria can be described within the message space

that includes agent�s types and the allocations implemented with the preceding principals.

On the contrary, we consider sequential common agency games with public contracts in

which the contract and the outcome of the contract, that is, the allocation implemented at

each stage, are observable by the other principals. This framework is a better description

of economic environments mentioned above. Also it leads to a di¤erent type of externality

that a contract between a principal and an agent exerts on the other principals: The

implemented allocation itself becomes a signal about agent�s private information. In this

respect the paper is closely related to work on dynamic principal - agent relationships

under imperfect commitment of Bester and Strausz (2001). We show that techniques

developed in Bester and Strausz can be applied to study a dynamic contracting problem

with many principals, or any combination of single principal - agent relationships under

imperfect commitment and multiprincipal relationships. In this respect we provide a

generalization of Bester and Strausz result.

We study general communication mechanisms in which, without loss of generality, a

contract is composed of a message space and a decision rule. The agent sends a message

from the speci�ed message set and, based on the message, a principal commits to a

(possibly stochastic) contract that implements a feasible allocation. All principals are

free to choose the message spaces and decision rules, which may in particular be state
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dependant.

In general there are three elements that can signal agent�s private information to

subsequent principals: the mechanism, its outcome, and the message reported by the

agent. Thus we distinguish between the cases of public and private communication.

Under private communication, the message reported by the agent to one principal is not

observed by the other principals. Under public communication, the principals also observe

the information submitted by the agent to preceding principals.

The main result of the paper is that the set of equilibrium allocations of the sequential

common agency game can be characterized within the type space. Naturally, the agent�s

incentives to report private information to a principal depend crucially on whether this

report is observed by the other principals.

Under private communication, the agent is not concerned that his report to one princi-

pal may a¤ect the contracting choices with the other principals. As a result, the standard

version of the Revelation Principle applies at each stage game. At the same time, de-

terministic contracts are suboptimal. Indeed, assigning a distinct allocation to each type

implies that the outcome of the contract is a perfect signal about agent�s type to the other

principals. By o¤ering a lottery a principal can limit the information about the agent�s

type revealed by the outcome of the contract. Thus, an optimal contract of a principal is

a menu of lotteries designed for each type of agent. However, this result does not imply

any restrictions on the structure of the lottery. Next, we study the structure of an optimal

lottery and show that the dimension of its support does not exceed the number of types

that reach a given stage with a positive probability. Therefore, an optimal contract can

be characterized as a menu of lotteries over a �nite support. Consequently, an optimal

contract can be found as a solution to an optimization problem.

Under public communication, the revelation of private information by the agent may

be costly for both the principal and the agent. The reason is that this information can be

used by other principals in the subsequent stages. A similar problem arises when a single

principal contracts with an agent over a number of periods. As new information about

the agent becomes available during the relationship, the principal and the agent may �nd

it mutually bene�cial to renegotiate the initial long term contract. However, anticipating

the renegotiation of the initial contract, the agent may become less prompt to reveal its

private information. This ultimately increases the cost for the principal of inducing a

truthful report. As a result, the principal may prefer to decrease the informativeness of

the agent�s report about its private information. Bester and Strausz (2001) analyze this
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situation and establish that the equilibria of the game can be characterized using direct

mechanisms in which it is an optimal strategy for the agent to report its type. In contrast

with the standard Revelation Principal, however, the agent does not necessarily reveal

its private information with probability one: It may be bene�cial for both parties that

the agent randomizes and misreports its information with some probability. In this paper

we show that the technique developed by Bester and Strausz (2001) can be extended

to sequential common agency games with public communication. This is because at

each contracting stage, the principal, be it the same or a di¤erent one, with possibly

a di¤erent objective at each state, is constrained to o¤er allocations that belong to the

Perfect Bayesian equilibria of the continuation game. The main di¤erence between our

framework and that of imperfect commitment is that a principal does not internalize

the impact of its contract on subsequent stages, and out-of-equilibrium messages may be

needed to preserve the equilibrium outcome. However, we show that these messages can

be preserved by the means of a direct mechanism.

We compare the set of equilibria under private and public communication. We show

that the two sets are equivalent in a sense that for each type of agent they induce the

same probability distribution of allocations. The main idea of this result is that a prin-

cipal can generate the same belief about agent�s type for subsequent principals either by

designing a lottery on the set of the messages, as under public communication, or the set

of implemented allocation, as under private communication.

The characterization results of the paper also apply to situations when the type of

agent is not persistent over time, and when the messages or allocations are observed with

some exogenous noise. In these case this information must be incorporated in de�nition

of the Bayes rule, but the equilibria can still be studied within the type space.

Our result is weaker than the Revelation Principle of Epstein and Peters as it holds only

for equilibrium mechanisms while the later paper constructs a language to characterize all

the mechanisms of the game. However, we believe that it provides a useful tool to study

many applications. A useful practical feature of our result is that, like in single principal-

agent mechanism design problems under asymmetric information, it allows to state the

sequential contracting problem as a sequence of programming problems in each of which

a principal maximizes its expected payo¤ under incentive compatibility constraints.

In the next section we present an example that illustrates the main features of the

result. In section 3 we set up the model of the sequential common agency. Then in

sections 5 and 4 we establish the Revelation Principle for the case of private and public
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communication. Section 8 concludes.

2 Example

In this section we present a simple example of sequential contracting that illustrates the

issues addressed in the paper. Two manufacturers, P1 and P2, contract sequentially with

a common supplier A for provision of an essential input. The manufacturers produce two

goods that they sell on di¤erent downstream markets. The contracting game lasts for two

periods. Each period i = 1; 2 Pi contracts with A for the provision of a quantity of input

qi � 0 at price ti that allows him to produce at most qi units of a �nal good. Denote

Ci = (qi; ti) the contract between the Pi and A. The outcome of the contract between P1
and A is observed by P2 who makes an o¤er in the beginning of second stage. The inverse

demand function in Pi�s downstream market is P (qi) = 1� qi:
The supplier produces an input at constant marginal cost � which is her private infor-

mation. It may be a low cost � with probability � or a high cost � with probability 1� �,
where 0 < � < 1 and �� � � � � > 0.
The pro�t made with Pi equals ui = ti � �qi, so A�s total pro�t from serving the two

manufactures is u = u1 + u2. The pro�t of each manufacturer is vi = (1� qi)qi � ti.
In the absence of information asymmetries about the cost the contracting decisions of

manufacturers are independent. Each Pi captures all the joint surplus with A by o¤ering

a contract ti = �qi and producing an e¢ cient quantity

q�(�) = 1
2
(1� �):

Pi thus obtains vi(�) = 1
4
(1� �)2, and A gets no rent, u1 = u2 = 0.

When the cost of the supplier is not known to the manufacturers, each manufacturer

would like to screen the supplier in order to base his market strategy on the cost. However,

in an otherwise symmetric situation, by observing the outcome of contracting between

P1 and A, P2 receives an additional signal about the supplier resulting in updated beliefs

� = Pr(�jC1): This information is valuable for P2 but may be disadvantageous for A. By
decreasing the uncertainty of P2 about A, P1 allows P2 to extract a bigger share of their

joint surplus. Thus, to reveal any information to P1, A has to be compensated for the

loss of the information advantage with P2. This information externality between the two

contracts increases the cost of information revelation for P1. It thus a¤ects P1�s trade-o¤
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between e¢ ciency and the informational rents. This leads to the question: How much

information P1 would like to acquire from A?

For example, P1 may abstain from revealing (and learning) any information by o¤ering

a single contract for both types of cost. As a result, P1 does not incur the cost of

information revelation, but ignores the supplier�s cost. To be accepted by both types, P1
must pay at least t = �q. Then, regardless the type, P1 produces the e¢ cient quantity

for high cost q� and leaves to a low cost A a positive rent u� = �� q�. The pro�t of P1
under this contract is vP1 =

1
4
(1 � �)2; which corresponds to the pro�t of dealing with a

high cost A under full information. Obviously, this contract has high e¢ ciency costs due

to the low production level asked from a low cost supplier.

Under this contract, the outcome of the �rst stage provides no new information to P2,

who thus contracts with A under the prior belief � = �: The best contract for P2 is a

screening mechanism that makes the production contingent on the value of the cost. To

induce the low cost type to reveal her information, P2 has to leave her the rent that she

can obtain by overstating the cost. The contract of P2 must therefore satisfy the following

incentive compatibility condition:

u2 � u2 +��q2: (1)

The optimal trade o¤ between rent extraction and e¢ ciency (see La¤ont and Martimort

(2002)) results in a downward distortion in the output q2:

q2 = q
�� = 1

2
(1� � � �

1� ���);

and a positive rent for the low cost A: u�� = ��q��. The total rent of the low cost A is

thus uP = u� + u��, where P stands for pooling.

Alternatively, P1 can design a contract with distinct outcomes for each type of A.

Then the outcome of the �rst stage allows P2 to infer perfectly the type of A, implying

that A gains no rent at the second stage. To induce her to reveal the information, P1
must therefore compensate A for the rent she could obtain by overstating the cost in each

of the two stages. If a low cost A selects the contract designed for the high cost type,

P2 is persuaded that he is facing a high cost supplier. This strategy allows A to gain u�

at the second stage, and u�� at the �rst stage. Therefore, the total cost of information

revelation to P1 under separating contract equals to uS = u� + u��.

The bene�t of information for P1 is the e¢ ciency gains of production: P1 produces an

e¢ cient quantity q� when dealing with a low cost supplier, and a conditionally e¢ cient
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quantity q�� when dealing with a high cost supplier. The pro�t of P1 is vS1 = �[1
4
(1 �

�)2 � (u� + u��)] + (1� �)[1
4
(1� �)2 � ( �

1����)
2]:

The two examples of contracts presented illustrate how the information externality

a¤ects the equilibria of the game. Also it suggest that the ability of P1 to alter the

information transmitted to P2 a¤ects the incentives of A to reveal it to P1. Then the

natural questions are: What is the optimal degree of revelation? and What is the best

strategy for P1; in the absence of any ad hoc restrictions on the class of contracts from

which he can choose.

3 The model

We consider a dynamic game betweenN principals, P1; :::; PN , and a single agent, A. There

are N stages. At each stage Pi contracts with A over an allocation xi 2 Xi. The outcome

of the contracting game de�nes an allocation x = (x1; :::; xN) 2 X = X1 � ::: � XN ;

where all Xi, i = 1; :::; N are assumed to be metric spaces. Denote x�i � (x1; :::; xi)

the outcomes of contracting up to period i and x+i+1 � (xi+1; :::; xN) the outcomes of

contracting from period i + 1 till period N: The decisions of principals P1; :::,Pi may

restrict the feasible choice of principal Pi+1. To account for this feature we assume that

once Pi implements allocation xi, the feasible choice of Pi+1 is restricted to Fi+1(x�i ); where

Fi+1(�) is a correspondence Fi+1 : Xi ) Xi+1: The agent has ex-ante private information

about its type � 2 � = (�1; :::; �T ), where 2 � T < 1 that is persistent through N

stages. In Section 7 we show how the results extend to the case of non-persistent private

information. The prior distribution of types, 
 = (
1; :::; 
T ), with 
t > 0 for t = 1; :::; T

and
P
t


t = 1; is common knowledge. Denote �i the set of types that play at stage i with

a positive probability.

We consider communication mechanisms (contracts) which are functions from mes-

sages to probability distributions over feasible allocations: A mechanism of principal Pi,

�i; consists of a message space Mi and a decision rule �i(�): For each message mi 2 Mi;

Pi commits to a decision �i(m) 2 �i; where �i is the set of probability distributions over

Fi(x
�
i�1). Mi is assumed to be a metric space, andMi denotes the Borel �� algebra on

Mi: The decision is a measurable mapping �i : Mi ! �i: Denote �
�
i � (�1; :::; �i) the

mechanisms proposed by principals P1; :::,Pi.

The strategy of Pi is the choice of a mechanism �i. Contracts are incomplete in

that Pi cannot contingent its contract on the decisions taken by the other principals
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P�i. The agent�s strategy at stage i is a message to Pi. Formally it is described by a

mapping from the type-contract space to the space Si of probability measures overMi;

�i : � � �1 � ::: � �i�1 ! Si. Denote �i � �
t�i;t and note that �i 2 Si: Also denote
�i = �
t�i;t and note that �i 2 �i:

The payo¤ of Pi depends on the allocation x and on the type of agent �t. Denote

vi;t(x
�
j ) the payo¤ of Pi at stage j when the agent is of type �t. It should be emphasized

that Pi controls directly only the allocation xi. However, xi may have an indirect impact

on allocations x+i+1 through two channels: by a¤ecting the feasible choice of P
+
i+1 and by

changing the perception of P+i+1 about the agent�s type. The payo¤ of Pi at stage i equals

to vi;t(x�i ), and his overall payo¤ is

vt(x) =
NX
i=1

vi;t(x
�
i ):

Similarly, the payo¤ of the agent �t at stage i is ui;t(x�i ), so its overall payo¤ is given by

ut(x) =
NX
i=1

ui;t(x
�
i ):

The functions vi(�) and ui(�); i = 1; :::; N are continuous and bounded on their domains.

The timing of the game is the following:

� The agent learns its type � 2 �:

� At each stage i; i = 1; :::; N , Pi o¤ers A to play �i; that results in allocation xi:

� Once �i is played, principal Pi+1 observes information Ii on past contracting activi-
ties (Ii is speci�ed below) and updates beliefs about the agent�s private information

to pi.

� At stage N + 1 the game ends.

The information of the agent at stage i consists of its type �, the mechanisms ��i
o¤ered by P�i , the pro�le of messages m

�
i�1 � (m1; :::;mi�1) sent to P�i�1; and the pro�le

of outcomes x�i�1 realized at stages 1; :::; i� 1: Denote hAi the history of the game for the
agent, where

hAi = (m
�
i�1; �

�
i�1; x

�
i�1; �i; �):
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For example, at i = 2; hi = (m1; �1(m1); x1; �2; �):

The information of Pi at stage i; Ii; has at most three components. The �rst one is the

sequence of mechanisms ��i � (�1; :::;�i) that were o¤ered by the preceding principals

P�i . The second one is the sequence of allocations that resulted from these mechanisms,

x�i . Finally, the third one is the sequence of messages that were communicated by the

agent to the preceding principals P�i�1, m
�
i . We assume that �

�
i and x

�
i become common

knowledge at stage i. For the sequence of messages we distinguish between public and

private communication. Under public communication, Pi observes all the messages that

has been sent by the agent to the preceding principals P�i . In this case the history of the

game for Pi is

hi(Pi; public) = (m
�
i�1;�

�
i�1; x

�
i�1):

Given that Pi observes the sequence of messages m�
i�1, it can also infer the decisions �

�
i�1

that were implemented by P�i�1: Under private communication, the message reported by

A to Pi is their private information: Then the history of Pi is

hi(Pi, private) = (��i�1; x
�
i�1);

that is, it is composed only of the pro�le of mechanisms o¤ered by the preceding principals

and the pro�le of the realized allocations. Denote (�; �) � (�i; �i)Ni=1 the strategy pro�le
for the principals and the agent in the game � = f�1; :::;�Ng, (�+i ; �+i ) � (�k; �k)Nk=i the
strategy pro�le at stages k = i; :::; N , and (��i ; �

�
i ) � (�k; �k)ik=1 the strategy pro�le at

stages k = 1; :::; i.

The observed history hi results in updating of beliefs concerning the type of the agent.

The posterior belief of Pi is a measurable mapping pi : Ii�1 ! Pi, where Pi = fp 2 Rj�ij
+ j

pj > 0; �
j
pj = 1g is the set of probability distributions over �i.

At stage i, Pi faces a history hi(Pi) and a state (x�i�1; pi); and o¤ers a mechanism

�i: The outcome of the mechanism �i determines the history hi+1(Pi+1) and the beliefs

pi+1 : Ii ! P , resulting in the subsequent state (x�i ; pi+1):

We study the Perfect Bayesian Equilibria of the game.

De�nition 1 A Perfect Bayesian Equilibrium of the game � consists of a pro�le (�; �)

and beliefs (
; p1; :::; pN�1) that satisfy the following three conditions:

1. Optimality of �: The mechanism of Pi, i = 1; :::; N is optimal, anticipating its
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impact on the continuation game �+i+1; that is, for every m 2Mi,X
�i

pi;t

Z
�i

Z
Mi

vi;t(x
�
i�1; xi(m); x

+
i+1(xi(m); pi(m)))d�i;t(m)d�i(m)

�
X
�i

pi;t

Z
�i

Z
Mi

vi;t(x
�
i�1; xi(m); x

+
i+1(xi(m); pi(m)))d�i;t(m)d�

0
i(m); for all �

0
i 2 �i:

2. Optimality of �: The reporting strategy of A is optimal at each stage i, anticipating
its impact on the continuation game �+i+1, described below in (3).

3. Bayes rule. The posterior belief of Pi is consistent with the Bayes rule, described
below in (4) and (5).

Let us consider a given (possibly state dependant) sequence of message spacesM . For

all types �t that play at stage i with a positive probability, pi;t > 0; the expected payo¤s

of Pi contracting with type �t, and the payo¤ of A are, respectively,

Vi;t(�i;t; pi; �i; x
�
i�1
��Mi) �

i�1X
j=1

vi;t(x
�
j )

+
NX
j=i

Z
�i

Z
Mi

vi;t(x
�
j�1; xi(m); x

+
j+1(xi(m); pi(m)))d�i;t(m)d�i(m);

Ui;t(�i;t; pi; �i; x
�
i�1
��Mi) �

i�1X
j=1

ui;t(x
�
j )

+

NX
j=i

Z
�i

Z
Mi

uj;t(x
�
j�1; xi(m); x

+
j+1(xi(m); pi(m)))d�i;t(m)d�i(m):

Then the expected payo¤ of Pi at state (x�i�1; pi) isX
�i

pi;tVi;t(�i;t; pi; �i; x
�
i�1
��Mi): (2)

The objective of Pi is to choose �i, pi and �i to maximize her expected payo¤ (2)

subject to three constraints: First, the agent�s reporting strategy is optimal, anticipating

its impact on the subsequent states:

Ui;t(�i;t; pi; �i; x
�
i�1
��Mi) � Ui;t(�0i;t; pi; �i; x�i�1

��Mi) for all �i 2 Si: (3)
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Second, the mechanisms o¤ered by subsequent principals belong to PBE of the game,

that is, �+j+1 is such that each �j, j � i+ 1, maximizesX
�j

pj;tVj;t(�j;t; pj; �j; x
�
j�1
��Mj):

Third, for all types in�i, the belief of Pi+1 is consistent with the Bayes rule. The de�nition

of the Bayes rule depends on the information available to Pi+1:

Under private communication, the belief of Pi+1 is derived from the mechanisms �i,

the behavioral strategy of the agent �i and the allocations implemented at previous stages,

x�i . The Bayes rule in this case writes:Z
H

pi;t(x)d�i(x) = pi�1;t�i;t(H) for all H 2 �i with �i(H) > 0: (4)

Under public communication, in addition to �i; x�i and �i, Pi+1 observes the message

mi reported by the agent to Pi. Thus the Bayes rule writes:Z
H

pi;t(m)d�i(m) = pi�1;t�i;t(H) for all H 2Mi with �i(H) > 0: (5)

To interpret (5), divide each side of the expression by �i(H) > 0. Then the left hand side

represents the belief of Pi+1 to face a type �t upon receiving a message from the set H.

The right hand side is the conditional probability that A is of type �t when A follows the

reporting strategy �i and the message from the set H is realized2. The only di¤erence

in (4) is that a principal updates beliefs upon observing realized allocations instead of

messages.

Our objective is to construct a set of tractable mechanisms that provide the same

payo¤ for all the players as the original game �. For this reason, we introduce some

further de�nitions that permit to order mechanisms in terms of payo¤s obtained by Pi
and A. We say that (x�i�1; �i; pi+1; �i; �

+
i+1

��Mi) is incentive feasible if �i is an optimal

strategy of the agent, so it satis�es (3), and pi+1 is derived from the Bayes rule (4) or (5),

depending on the communication mode. (x�i�1; �i; pi+1; �i; �
+
i+1

��Mi) is incentive e¢ cient

if there is no incentive feasible (x�i�1; �
0
i; p

0
i+1; �

0
i; �

+
i+1

��Mi) such thatX
�i

pi;t[Vi;t(x
�
i�1; �

0
i; p

0
i+1; �

0
i; �

+
i+1

��Mi)� Vi;t(x�i�1; �i; pi+1; �i; �+i+1
��Mi)] > 0

and Ui;t(x�i�1; �
0
i; p

0
i+1; �

0
i; �

+
i+1

��Mi) = Ui;t(x
�
i�1; �i; pi+1; �i; �

+
i+1

��Mi):

2As noted in BS, by Radon-Nikodym�s Theorem (see, e.g. Stockey and Lucas (1989)), equation (4)
de�nes pi�1 uniquely �i- almost everywhere.
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Finally, (x�i�1; �i; pi+1; �i; �
+
i+1

��Mi) and (x�i�1; �
0
i; p

0
i+1; �

0
i; �

+
i+1

��Mi) are payo¤ equivalent

if X
�i

pi;t[Vi;t(x
�
i�1; �

0
i; p

0
i+1; �

0
i; �

+
i+1

��Mi)� Vi;t(x�i�1; �i; pi+1; �i; �+i+1
��Mi)] = 0

and Ui;t(x�i�1; �
0
i; p

0
i+1; �

0
i; �

+
i+1

��Mi) = Ui;t(x
�
i�1; �i; pi+1; �i; �

+
i+1

��Mi):

In the rest of the paper we will analyze how a given equilibrium pro�le (�; �) of the

game with unrestricted message spaces relates to an equilibrium pro�le of the game in

which the principals are restricted to use messages form the type space �: The classical

result of the mechanism design is the Revelation Principle which states that the two

equilibria sets are equivalent. In terms of above de�nitions, the standard Revelation

Principle can be stated as follows.

Revelation Principle. Suppose N = 1. If (�; �jM) is incentive feasible, then there
exists a direct mechanism �d = (�; �d) and an incentive feasible (�d; �d

���) such that
(�; �jM) and (�d; �d

���) are payo¤-equivalent. Moreover, it is an optimal strategy for
the agent to reveal its type, �t(�t) = 1 for all �t 2 �.

The intuition behind the standard Revelation Principle is that the principal can repli-

cate the behavior of the agent by combining two functions � : �!M and � :M ! �(X)

to a single function �d � � � � : � ! �(X). Then the mechanism �d induces the same

probability distribution over allocations as the original mechanism � with the report-

ing strategy �. The reason why the Revelation Principle cannot be applied directly to

the game with many principals is that each principal Pi can commit only to its own

mechanism �i; and not to the whole game � = (�1; :::; �N): (At the same time, when Pi
contracts with the agent, its contract induces a continuation game with an outcome that

can be characterized as a PBE.) In the following two sections we establish the Revelation

Principle for the cases of public and private communication.

4 Public Communication

4.1 The Revelation Principle

In this section we characterize the equilibria of the game under public communication.

When the agent contracts with a principal under public communication, the report sent

13



to Pi is observed by all P+i . Therefore, when selecting its reporting strategy, the agent is

concerned not only with the impact of the report on the decision of Pi, but also of all the

subsequent principals. It implies that communication at each stage cannot be considered

independently as under private communication.

Another feature of this setting is that all the information transmitted by the agent

to Pi by the means of message mi is revealed directly to P+i . If Pi �nds it bene�cial

to preserve some uncertainty about the agent�s type for the subsequent principals, this

strategy cannot be achieved when the agent reports its type truthfully. In the example of

Section 2, if the supplier submits a truthful report about her type, P2 becomes perfectly

informed. Note that o¤ering a stochastic contract does not provide the remedy against full

revelation because the lottery is assigned after A submits the report to P1, and therefore,

after P2 learns the type. Hence, if P1 prefers to control the information revealed to

P2, there must be at least some types that follow a non-degenerate stochastic reporting

strategy.

It may seem that the characterization of the implementable allocations faces a serious

problem because there can be mechanisms that are not supported by the direct incentive

compatible mechanism. However, the information that a principal aims to infer from the

agent through the communication mechanism is only the agent�s type. The reason why the

direct revelation mechanism may not support the principal�s optimal mechanism is that a

truthful deterministic report on the type can be suboptimal. One way to circumvent this

problem is to reduce the informativeness of the report about the type. In other words, the

agent must be allowed to misreport its private information with some probability. Then

communication strategy itself becomes stochastic. However, randomizing over the type

space is su¢ cient to generate any belief for P+i+1, and the equilibria of the game can still

be characterized within the type space:

To provide a formal proof of the argument, we apply the technique developed by

Bester and Strausz (2001) who study a general problem of contracting under imperfect

commitment in a long term principal - agent relationship. They show that any opti-

mal mechanism can be characterized within the class of direct mechanisms in which an

agent reports its true type with a positive probability. To reduce the cost of information

revelation, the principal commits to a gradual learning policy.

The major di¤erence between contracting under imperfect commitment and sequential

contracting with many principals is that the objectives of di¤erent principals are not

aligned. Each principal does not internalize the externality that its contract imposes on

14



the other principals. However, this di¤erence is not crucial for considering the equilibria

within the type space. Under imperfect commitment, when a principal contracts with an

agent in period i, he is constrained to allocations that arise as Perfect Bayesian equilibria

of the continuation game. Basically, when contracting in period i, the principal anticipates

that he will react to the outcome of today�s contract by o¤ering the best contract in period

i+1. Each period the principal anticipates that his di¤erent selves will behave optimally

in the subsequent periods.

A similar situation arises when a number of principals contract sequentially with an

agent. At each period i a principal Pi anticipates that the subsequent principals P+i+1
will behave optimally given the state and information induced by its contract. Thus Pi is

constrained to allocations that arise as Perfect Bayesian equilibria of the game between

P+i+1 and A. One potential obstacle with replacing a general mechanism with a direct one

is that out-of-equilibrium messages may be important to support the optimal mechanism.

However, we show that this problem can be circumvented by preserving the allocations

that arise out-of-equilibrium by the means of a direct mechanism.

To characterize the equilibria of the game, we proceed in the following steps. First

we note that at stage N the standard Revelation Principle applies. At stage N � 1
we apply the technique developed in Bester and Strausz (2001) to replace an original

mechanism (�N�1; �N�1) with an incentive feasible and payo¤equivalent direct mechanism

(�dN�1; �
d
N�1) with �

d
N�1;t(�t) > 0 for all �t 2 �. Also we show that when PN�1 o¤ers

a direct mechanism, P�N�2 and A do not deviate from the original equilibrium pro�le

(��N�2; �
�
N�2) at stages 1; :::; N � 2. By iterating the argument for all i = 1; :::; N , we

conclude that the equilibria allocations of the original game with unrestricted message

spaces can be characterized within a class of direct mechanisms.

It is straightforward to show that the standard Revelation Principle applies at stage

N .

Lemma 1 For any equilibrium pro�le (�N ; �N) there exists an incentive feasible (�
d
N ; �

d
N)

with a message space � and �dN;t(�t) = 1 for all �t 2 �. Moreover, anticipating the direct
mechanism of PN , P�N�1 and A do not deviate from the original pro�le (��N�1; �

�
N�1).

At stage N�1; PN�1 faces a state (x�N�2; pN�1) and anticipates that PN o¤ers a direct
mechanism �dN . To construct a direct mechanism at stage N�1, we �rst construct a direct
mechanism for all types �t 2 �N�1 that reach stage N � 1 with a positive probability.
Then in Proposition 3 we extend it to the original message space �:
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Let us �rst focus on the set of types �t 2 �N�1 that reach the stageN�1 with a positive
probability. Following Bester and Strausz (2001), the direct mechanism (�N�1,�N�1) can

be constructed in two steps. First step is to show that there exists an incentive feasible

pro�le with a message space M 0
N�1 that contains at most TN�1 = j�N�1j messages and is

payo¤ equivalent to the original pro�le. Second step is to apply the Marriage Theorem

to the reduced message space and construct a direct mechanism (�dN�1,�
d
N�1).

Proposition 1 Let (x�N�2; �N�1; pN ; �N�1; �N
��MN�1) be incentive e¢ cient. Then there

exists an incentive feasible (x�N�2; �
0
N�1; pN ; �N�1; �N

��M 0
N�1) and a �nite set M

0
N�1 =

fm1; :::;mTN�1g 2 MN�1 with
��M 0

N�1
�� � TN�1 and �0N�1(M 0

N�1) = 1 such that

(x�N�2; �N�1; pN ; �N�1; �N
��MN�1) and (x�N�2; �

0
N�1; pN ; �N�1; �N

��M 0
N�1) are payo¤-

equivalent. Moreover, the vectors �0N�1(mh) = (�
0
N�1(mh); :::; �

0
N�1(mh)), h = 1; :::;

��M 0
N�1

��
are linearly independent.

The basic idea of Proposition 1 is that when PN�1 uses more messages than there are

types, the vectors of the agent�s reporting strategy under the original mechanism f�hg
must be linear dependent. Since the agent is indi¤erent between all the messages sent

with a positive probability, without a¤ecting the incentives of A, PN�1 can distribute the

weight from some messages so as to reduce the dimension of the message space to the

type space. An important implication of Proposition 1 is that PN�1 does not need to use

a message space of a dimension higher than the type space.

As an illustration, suppose that A can be one of two types, �t 2 f�; �g, and the original
mechanism of PN�1 uses three messages fm1;m2;m3g. Proposition 1 states that there
exists a reporting strategy �0 that supports a perfect Bayesian equilibrium and contains

only two messages. The result trivially holds if some message in fm1;m2;m3g is sent with
zero probability by both types. Suppose now that each message is in the support of at

least some type. Consider vectors

�1 =

�
�1
�1

�
; �2 =

�
�2
�2

�
; �3 =

�
�3
�3

�
;

where �h (respectively, �h), h = 1; 2; 3 represents the probability that type � (respectively,

�) sends a message h. Since there are only two types, the vectors �1; �2; �3 are linearly

dependent. So, there exists a non-zero vector � = (�1; �2; �3) 6= 0 such thatX
h

�h�h = 0. (6)

16



For any given � let us de�ne

�t � � 1

minh �h
and �b � � 1

maxh �h
: (7)

Consider a new reporting strategy of the A to PN�1 such that

�0h(�t;�) = (1 + ��h)�h(�t) with � 2 [�b; �t]: (8)

�0h(�t;�) indeed constitutes a strategy of type �t: �
0
h(�t;�) � 0 and from condition (6) we

obtain
P

h �
0
h(�t;�) =

P
h(1 + ��h)�h(�t) = 1:

If a pro�le (pN ; �; �N) is an equilibrium under the mechanism �N�1 with a message

space fm1;m2;m3g; then the pro�le (pN ; �0(�); �N) is also an equilibrium under this

mechanism. Indeed, a new reporting strategy �0(�) induces the same posterior beliefs for

PN ,

pt;N(mh;�) =
pt;N�1(1 + ��h)�h(�t)P
j pj;N�1(1 + ��h)�h(�j)

= pt;N(mh);

whenever
P

j pj;N�1(1+��h)�h(�j) > 0. It implies that the choice of �N remains optimal

for PN . Furthermore, since any message mh results in the same allocation of PN�1 and

PN , the agent is indi¤erent between the two strategies.

The payo¤ of PN�1 under the new reporting strategy is maximized when A uses at

most two messages. The payo¤ of PN�1 writes

VN�1(pN ; �
0(�); �N j�N�1) =

X
t

pt;N�1
X
h

�0h(�t;�)VN�1;t(x
�
N�2; �N�1; �N)

and is linear in �. Therefore, it is maximized by some �� 2 f�t; �bg. Note that the strategy
�0(��) is distinct from the original strategy � since �b < 0 < �t. And by construction,

under �� at least one message is sent with zero probability. Hence there exists a reporting

strategy �0(��) that supports the same equilibrium as under the original mechanism and

uses at most two messages.

The next step is to use the reduced message space M 0
N�1 to construct a direct mech-

anism. The idea is to associate each message in M 0
N�1 with some type. We rely on the

following theorem attributed to Hall (1935).

Lemma 2 (Marriage theorem) Let H be a �nite non-empty set and K be a non-empty

set, possibly in�nite. Further, let D : H ) K be a correspondence and for any set G � H
de�ne

D(G) = [
h2G
D(h):
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Then there exists a mapping d : H ! K such that:

(i) d(h) = d(k) implies h = k, and

(ii) d(h) 2 D(h) for all h 2 H;
if and only if jD(G)j � jGj for all G � H:

This combinatorial results can be applied to our setting as follows. Take the set H to

be the reduced message space M 0
N�1. For each subset G of messages in H; D(G) denotes

the set of types that send messages from G with a positive probability. The Marriage

Theorem asserts that if the number of messages in G does not exceed the number of

types that send messages from G with a positive probability, then there is a way to assign

distinctively to each message a type that sends this message with a positive probability.

Applying the results of Proposition 1 and Lemma 2 leads to the following proposition.

Proposition 2 If (x�N�2; �N�1; pN�1; �N�1
��MN�1) is incentive e¢ cient, then there exists

a direct mechanism �dN�1 = (�N�1; �
d
N�1) and an incentive feasible (x

�
N�1; �

d
N�1; p

d
N�1; �

d
N�1

���N�1)
such that (x�N�2; �N�1; pN�1; �N�1

��MN�1) and (x�N�1; �
d
N�1; p

d
N�1; �

d
N�1

���N�1) are payo¤
equivalent. Moreover, with the direct mechanism each type reports its private information

with a positive probability, �0N�1;t(�t) > 0 for all �t 2 �N�1:

The result of Proposition 2 is obtained in two steps. First, it can be veri�ed that the

conditions of the Marriage Theorem are satis�ed for the reduced message space. Therefore,

there exists a mapping d :M 0
N�1 ! �N�1 that assigns a type to each message. Then this

mapping can be inverted to associate each type with a message that it sends with positive

probability. The inverted mapping can be used to construct a direct mechanism in which

the reporting strategy is a probability that type �i sends message �j; with the property

that each type reports its private information with positive probability.

To complete the characterization, one has to extend the message space �N�1 to the

set of types that play at stage N � 1 with zero probability. The mechanisms o¤ered
to these types may be necessary to sustain the original equilibrium pro�le (�; �): In the

following proposition we extend the direct mechanism to the original message space � and

verify that this extension preserves the out-of-equilibrium allocations of (�; �). Hence we

conclude that the behavior of P�N�2 and A does not change when they anticipate that

PN�1 will o¤er a direct mechanism.

Proposition 3 For any incentive feasible (�N�1; pN�1; �N�1
��MN�1) there exists a direct

mechanism �N�1 = (�; �
d
N�1) and an incentive feasible (�

d
N�1; p

d
N�1; �

d
N�1

���) such that
18



(�N�1; pN�1; �N�1
��MN�1) and (�dN�1; p

d
N�1; �

d
N�1

���) are payo¤ equivalent.
Iterating the argument of Propositions 2 and 3 leads to the main theorem of this

section.

Theorem 1 In the game with public communication, for any equilibrium pro�le (�; �) 2
PBE(�) there exists an equilibrium pro�le (�d; �d); where �d is a direct mechanism and

�dt (�t) > 0 which is payo¤ equivalent to (�; �).

The result of Theorem 1 asserts that the equilibria of a game under public communi-

cation can be characterized within the class of direct mechanisms in which A reports its

type with a positive probability. It reduces substantially the complexity of the problem.

The game can be solved backwards. At each stage i Pi o¤ers a direct mechanism that

maximizes its payo¤ subject to (i) the behavior of the subsequent principals, (ii) the

incentive compatibility constraints of the agent, and (iii) complementarity conditions on

the reporting strategy that guarantee that the agent is indi¤erent among all the messages

it sends with a positive probability.

4.2 Structure of the optimal mechanism

In general an optimal mechanism of Pi is a lottery over Fi. In this section we show that

if a principal does not o¤er a stochastic contract in an isolated game, then an optimal

contract in a multistage game is also deterministic. By an isolated stage game we mean

a game played between a principal Pi and an agent in the absence of the other principals

P�i: For any given x�i, an optimal contract of this game can be characterized by a direct

mechanism and it is a solution to the following program.

max �
�i
pi;t

Z
Fi

vi;t(x
�
i�1; x; x

+
i+1)d�t(x) (9)

s:t: �t 2 argmaxf�jg

Z
Fi

ui;t(x
�
i�1; x; x

+
i+1)d�j(x):

Proposition 4 If a principal Pi o¤ers a deterministic contract in an isolated game 9,
then for each message sent with a positive probability at stage i of a multistage game, Pi
assigns a deterministic allocation.
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Proof. Consider a multistage game. An optimal contract of Pi at stage i is a solution
to the program

max �
t2�i

pi;t �
j2�i

�j;t

Z
Fi

vi;t(x
�
i�1; x; x

+
i+1(x; pi+1))d�t(x)

s:t: �j;t 2 arg max
f�0j;tg

�
j2�i

�0j;t

Z
Fi

ui;t(x
�
i�1; x; x

+
i+1(x; pi+1))d�j(x):

Since an isolated game an optimal contract is deterministic, for each message reported

with a positive probability, an optimal contract of Pi must also be deterministic. Indeed,

it is an optimal choice of Pi. Also it does not a¤ect beliefs of P+i+1, and therefore the

reporting strategy of the agent at stage i:

This simple result is very useful in applications. It states that at each stage a principal

does not need to o¤er a contract that contains more allocations than the dimension of j�ij :
Strausz (2004) analyzes the conditions under which deterministic mechanism is optimal

in an isolated stage game. He demonstrates that if an optimal deterministic mechanism

does not involve bunching, then it is also optimal within a general class of stochastic

mechanisms.

We apply the results of this section to characterize an optimal contract of the example

of Section 2

Example. Under public communication, the report of A to P1 is observed by P2. So,

if the low cost supplier reports truthfully its type to P1; P2 infers perfectly the type of A

and o¤ers a contract under full information. This policy is costly to P1 who has to leave

the low cost type the rent ��q�2, where q
�
2 is the full information quantity o¤ered to high

cost type at the second stage. By reducing the informativeness of the report of high cost

supplier, P1 will induce P2 to introduce downward distortion of the output of this type,

and consequently, decrease the rent paid to the low cost supplier. The optimal contract

of P1 thus consists of a menu of two allocations (t1; q1) and (t1; q1) and the following

reporting strategies. A high cost type reports its true type with probability one. A low

cost type reveals the true type with probability �; � = Pr(e� = ���� �). P1 assigns a contract
(t1; q1) when A reports �; and (t1; q1) when A reports �. When P2 observes message �, he

infers that the supplier has low cost. When he observe the message �, he holds beliefs

� =
�(1� �)

�(1� �) + 1� � :
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In the second stage, the low cost supplier produces the e¢ cient quantity q�. The quan-

tity of the high cost supplier is distorted downwards, but now the value of the distortion

depends on the reporting strategy �.

q
2
= q�; (10)

q2(�) = 1
2
(1� � ��� �

1� � (1� �)):

The lower is the �; the lower is the informativeness of message � that the agent has high

cost. As a result, the higher is the distortion of the quantity of the high cost type at the

second stage.

The optimal contract of P1 solves the program:

max
(t1;q1;�)

��[(1� q
1
)q
1
� t1] + �(1� �)[(1� q1)q1 � t1]

+(1� �)[(1� q1)q1 � t1]
IC: t1 � �q1 � t1 � �q1 +��q2;
IC : t1 � �q1 � t1 � �q1;
PC: t1 � �q1 � 0;
PC : t1 � �q1 � 0;
CC: (1� �)[t1 � �q1 � (t1 � �q1 +��q2)] = 0:

The last constraint CC is the complementarity condition. It states that when a low cost

type is has a non-degenerate reporting strategy � 6= 1, it must be indi¤erent between

messages � and �.

Compared to the incentive constraint of under full separation (1), the incentive con-

straint IC of the above problem is relaxed because��q2(�) < ��q
�: However, introducing

this noise is not costless. With probability 1�� P1 assigns an ine¢ cient production quan-
tity q

1
to the e¢ cient supplier. An optimal contract trade-o¤s the bene�ts of a reduced

rent with the e¢ ciency costs of the lottery. The incentive constraint IC1 and the par-

ticipation constraint PC1 are the binding constraints. Then, the �rst order (su¢ cient)

conditions with respect to q
1
, q1 and � imply:

q
1
= q�;

q1 =
1
2
(1� � � ��

1� ����);

[(1� � � q
1
)q
1
���(q1 + q1(�))]� (1� � � q1)q1 =

1

2
�

�

1� � (��)
2:
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The optimal lottery is determined by the last condition. The marginal cost of the lottery

is the reduction in pro�ts of P1 due to assigning an ine¢ cient production to the low cost

supplier. The marginal bene�t is the decrease in the rent left to this type. Note that by

o¤ering a lottery with � < 1 P1 increases the e¢ ciency of his contract compared to the

full separation: q1 > q
��. The optimal contract of P1 is an intermediate case between no

disclosure and full disclosure. It has a pooling feature in that observing the message �

leaves P1 uncertain about the type of the supplier.

5 Private Communication

5.1 The Revelation Principle

The basic idea of the Revelation Principle is that a direct mechanism can replicate the

distribution of outcomes of any indirect mechanism. This argument extends easily to

the game with many principals under private communication. Indeed, when the message

reported to a principal is not observed by the other principals, it cannot a¤ect the beliefs

of these principals about agent�s type. From the point of view of the agent, the whole

game can be considered as a sequence of N games withN independent reporting strategies

�1; :::; �N . The link between these games is provided through the beliefs that a principal

Pi derives from observing the state x�i�1. Since replacing the original mechanism with

a direct one in each single principal - agent relationship results in the same probability

distribution over allocations, it leads to the same state structure. Therefore, the beliefs

of Pi+1 when Pi plays a direct mechanism are the same as under the original mechanism.

Each principal can thus innocuously replace its original mechanism with a direct one

without a¤ecting the distribution over allocations and the information structure. Hence,

a unilateral deviation of Pi to a direct mechanism does not a¤ect the behavior of P�i and

the reporting strategy of A to P�i. Iterating this argument for all i = 1; :::; N leads to

the following result.

Theorem 2 In the game with private communication, for any equilibrium pro�le (�; �) 2
PBE(�) there exists an incentive feasible direct mechanism �d which is payo¤ equivalent

to �. Moreover, �di;t(�t) = 1.

One interesting implication of Theorem 2 is that, even though the agent�s private

information at each stage i consists of the type � and the messages sent to principals
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P�i�1, a principal Pi does not need the information about these messages. In fact all the

information that a principal needs for assigning a contract is the agent�s report on its

type.

5.2 Structure of the optimal mechanism

In contrast with most static principal - agent problems in which the �no bunching�prop-

erty is a su¢ cient condition for the optimal mechanism to be deterministic (Strausz

(2004)), an optimal mechanism in the game with many principals is stochastic. The

reason is that to control the information revealed to subsequent principals, the outcome

of stage i must contain some noise about the agent�s type. As shown in the simple exam-

ple of Section 2, if Pi o¤ers a deterministic contract, the principals P+i+1 contract with the

agent under full information about the type. When revelation of information is costly,

designing a stochastic contract will be optimal. In this section we show that the equilibria

of the game under private communication can be characterized by a contract with a sur-

prisingly simple structure: At each stage i the support of a stochastic contract contains

at most j�ij allocations.
In equilibrium, the optimal mechanism designed by principal Pi, �i, the mechanisms

o¤ered by the subsequent principals, �+i+1; the posterior beliefs, pi+1 must satisfy the

following three conditions: (i) optimality of �+i+1; (ii) optimality of agent�s behavioral

strategy, �i;t(�t) = 1 and

NX
j=i

Z
�(Fi�1)

uj;t(x
�
j�1; x; x

+
j+1(x; pi(x)))d�i;t(x)

�
NX
j=i

Z
�(Fi�1)

uj;t(x
�
j�1; x; x

+
j+1(x; pi(x)))d�

0
i(x); for all �

0
i 2 �(Fi);

and (iii) Bayes rule (4) whenever possible. Then one can de�ne incentive feasible and

incentive e¢ cient pro�les with respect to the support Fi of the principal�s optimal mecha-

nism. We say that (x�i�1�i; pi+1; �
+
i+1

��Fi) is incentive feasible if (�i; pi+1; �+i+1) is a Perfect
Bayesian equilibrium given mechanism (�i; Fi). It is incentive e¢ cient if it is incentive

feasible and there is no other incentive feasible mechanism (x�i�1�
0
i; p

0
i+1; �

+
i+1

��Fi) such
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that X
�i

pi;t[Vi;t(x
�
i�1�

0
i; p

0
i+1; �

+
i+1

��Fi)� Vi;t(x�i�1�i; pi+1; �+i+1��Fi)] > 0 (11)

and Ui;t(x�i�1�i; pi+1; �
+
i+1

��Fi) = Ui;t(x�i�1�0i; p0i+1; �+i+1��Fi): (12)

Finally, the two pro�les are payo¤ equivalent when condition (12) holds and (11) is sat-

is�ed as an equality.

The logic of Bester and Strausz (2001) can now be applied to analyze the sup-

port Fi of an incentive e¢ cient mechanism (x�i�1�i; pi+1; �
+
i+1

��Fi). We show that an

incentive e¢ cient pro�le (x�i�1�i; pi+1; �
+
i+1

��Fi) can be replaced with a payo¤ equivalent
(x�i�1�

0
i; pi+1; �

+
i+1

��Fi) in which the support of �0i consists of at most �i allocations. We
employ this result to establish that any PBE can be characterized by a payo¤ equivalent

mechanism that uses at most j�ij allocations at stage i, and for each type there is one
distinct allocation that is assigned to this type with a positive probability.

Proposition 5 In a game with private communication, for any equilibrium mechanism

�i with the support Fi there exists a payo¤ equivalent mechanism ��i with the support

F �i � Fi that contains at most j�ij elements. When type �t is assigned a non-degenerate
lottery, it is indi¤erent among the allocations that are assigned to this type with a positive

probability.

The structure of the proof is identical to the Revelation Principle under public com-

munication. There, for any given equilibrium pro�le we considered a reporting strategy of

the agent over a general message space. We have shown that replacing it with a strategy

over the type space does not a¤ect the payo¤s and the beliefs of principals P+i+1. Here,

instead of studying the reporting strategy of the agent (which is a deterministic truthful

revelation strategy), we focus on the mechanism o¤ered by the principal. We show that

any mechanism that is part of PBE can be replaced with a payo¤ equivalent mechanism

with �nite support. Moreover, this mechanism does not a¤ect optimal mechanisms of

P+i+1; incentives of the agent and beliefs of subsequent principals. This is a general result

that does not rely on any assumptions about the structure of payo¤ functions, like Spence-

Mirelees condition, for example. It is useful for applications because it provides a concrete

way to characterize an optimal contract of a principal as a solution of an optimization

problem under incentive constraints. We apply the results of this section to characterize

the optimal mechanism under private communication for the example of Section 2.
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Example: As in the case of public communication, the outcome of the contract of P1
should be an imperfect signal when the agent has high cost. This way P1 induces P2 to

reduce the quantity o¤ered to the high cost type, and ultimately decreases the rent paid

to the low cost type in the �rst period. Therefore, the contract of P1 has the following

structure. Type � is assigned a deterministic allocation (t1; q1); type � is assigned a lottery

between (t1; q1) and (t1; q1) with probabilities � and 1��, respectively. When P2 observes
a contract (t1; q1); he infers that A is � type. When P2 observes the contract (t1; q1), it

updates the beliefs to

� =
�(1� �)

�(1� �) + 1� � :

In the latter case the output schedule of P2 is the same as in the case of public commu-

nication (10).

At the �rst stage, P1chooses the contracts (t1; q1) and (t1; q1); and the lottery � that

solve the program.

max
(t1;q1;�)

��[(1� q
1
)q
1
� t1] + �(1� �)[(1� q1)q1 � t1]

+(1� �)[(1� q1)q1 � t1]
IC1 : t1 � �q1 � t1 � �q1 +��q2(�);
IC1 : t1 � �q1 � t1 � �q1;
PC1 : t1 � �q1 � 0;
PC1 : t1 � �q1 � 0:

The striking feature of the above program is that it is identical to the one under public

communication. It turns out that in this example the observability of communication does

not have any additional strategic e¤ect on the behavior of the players. Under either com-

munication regime, P1 controls the information that it transmitted to P2. Under private

communication, the uncertainty about the type of agent is preserved by the stochastic

structure of the contract o¤ered by P1. Under public communication, the uncertainty is

preserved by the stochastic structure of the agent�s reporting strategy. In the next section

we show that this feature of equilibria is a general property that holds for any sequential

common agency game.

6 Equivalence

In this section we note that the expected payo¤ of players and the distribution of alloca-

tions in equilibrium do not depend on communication mode. The basic idea of the result
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is that a principal can generate the same beliefs either by inducing a stochastic reporting

strategy or by o¤ering a stochastic contract.

Consider a contract of principal Pi under private communication. It consists of at

most j�ij distinct allocations fxi;1; :::; xi;j�ijg and a distribution �i;t(xi;j) = Pr(xi;jj �t):
Denote xi;t the allocation that is assigned to type �t with a positive probability. Then an

optimal contract of Pi solves

max �
t
pi;t�

j
�i;t(xi;j)vi;t(x

�
i�1; xi;j; x

+
i+1(xi;j; pi+1)) (13)

s:t: ui;t(x
�
i�1; xi;t; x

+
i+1(xi;j; pi+1)) � ui;t(x�i�1; xi;k; x+i+1(xi;j; pi+1)) for 8t; k 2 �i;

if �i;t(xi;j) > 0 then ui;t(x
�
i�1; xi;t; x

+
i+1(xi;j; pi+1)) = ui;t(x

�
i�1; xi;j; x

+
i+1(xi;j; pi+1)):

The �rst constraint says that each type must weakly prefer an allocation associated with

this type. The second constraint guarantees that an agent is indi¤erent among allocations

in the support of the optimal stochastic contract.

Under public communications, a contract of Pi consists of the set of allocations

fxi;1; :::; xi;j�ijg and reporting strategies for the agent �i;t(�j) = Pr(�jj �t): Denote xi;j
an allocation assigned when the agent reports message �j. An optimal contract solves

max �
t
pi;t�

j
�i;t(�j)vi;t(x

�
i�1; xi;j; x

+
i+1(xi;j; pi+1)) (14)

s:t: ui;t(x
�
i�1; xi;t; x

+
i+1(xi;j; pi+1)) � ui;t(x�i�1; xi;k; x+i+1(xi;j; pi+1)) for 8t; k 2 �i;

if �i;t(�j) > 0 then ui;t(x
�
i�1; xi;t; x

+
i+1(xi;j; pi+1)) = ui;t(x

�
i�1; xi;j; x

+
i+1(xi;j; pi+1)):

The �rst constraint guarantees that an agent weakly prefers to reveal his type. The

second constraint states that an agent is indi¤erent among the messages sent with a

positive probability.

It is straightforward to see that the two programs (13) and (14) are equivalent. Thus

we obtain the following result.

Proposition 6 The equilibrium distribution of allocations and the expected payo¤ of the

principals and the agent are independent of communication mode.

The implication of this result is that when the principal can o¤er stochastic contracts,

the disclosure of information reported by a principal to the agent does not a¤ect the

outcome of the game.
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7 Extensions and Discussion

Non-persistent private information. The characterization results presented in the
paper can also be extended to the environment where it is common knowledge that private

information of an agent changes over time. When types are independent over time, the

externality of the contract of one principal on the feasible set of the subsequent principals

is conducted only through the choice of allocation. In this case under both communication

modes the information is revealed with probability one at each contracting stage. A more

interesting situation arises when private information of the agent is correlated over time.

Technically, it is tedious but straightforward to show that in this case the equilibria can

still be characterized within the type space. The only new feature is that the information

about correlation of types should be incorporated into the de�nition of the Bayes rule.

Noisy observation of contract outcomes. The results can also be extended to
the case where the outcome of contracting is observed with some exogenous noise. For

example, one can assume that the subsequent principals observe a signal either about

the message or about the implemented allocation, depending on communication mode.

If information about the signal and precision of the signal is common knowledge, again,

the results presented in the paper hold, but the Bayes rule should be adjusted for this

information.

One interesting question that presents an avenue for further research is whether it is

possible to obtain closed form solutions for a game with an arbitrary number of periods.

So far the applications in the literature on imperfect commitment or sequential common

agency mostly focused on two period models. One major obstacle that prevented exten-

sion of this literature to games with many periods is that it is not straightforward to

understand which constraints are binding at each contracting stage. On the other side,

control of information revealed by the contract to the other principals is the major reason

why principals decide to implement stochastic contracts. The example studied in the

paper provides good intuition about the structure of the pooling contract. In the exam-

ple, it is costly for the �rst principal to implement a contract under which an e¢ cient

agent�s type is revealed with probability one. Thus, this type is partially pooled with an

ine¢ cient one. This result also translates in the necessary condition on the set of binding

incentive constraints: To be indi¤erent between the two contracts, the downward incen-

tive constraint of the e¢ cient type must be binding. Thus, if all principals and the agent

have the same ordering of types, the constraints will be binding downwards. Another ob-
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servation is that this structure implies that following each implemented contract the set

of types assigned a positive probability is weakly decreasing. These observation suggest

that recursive methods developed by Abreu, Pearce and Stacchetti (1990), Phelan and

Townsend (1991) and Marcet and Marimon (1998) could be extended to study adverse

selection problem of the type we addressed in the paper.

8 Conclusion

The paper characterizes the direct mechanisms for sequential common agency games.

We show that when the outcome of contracting with one principal is observed by the

other principals, the equilibria of the game can be characterized within the type space.

We distinguish between the cases of private and public communication. Under private

communication, the message that the agent submits to one principal is not observed by

the other principals. In this case the standard version of the Revelation Principle holds:

The equilibrium of the game can be characterized within the class of direct mechanisms

in which the agents reports truthfully its type to each principal. However, the contract is

in general stochastic. We also show that the size of the support of the stochastic contract

does not need to exceed the number of types that occur with a positive probability at

this stage. When communication between the principal and the agent is public, that is,

observed by the other principals, the equilibria of the game can also be characterized

within the class of direct mechanisms. However, the requirement on the revelation of

private information by the agent is weaker than in the classical case, and occurs with a

positive probability. We also show that in equilibrium the two communication modes lead

to the same distribution of allocations.

The characterization results that we present in the paper allow to formulate the con-

tracting problem as a solution of an optimization problem where a principal needs to

select a �nite number of allocations and a lottery over this support of allocations. The

results also extend to the cases when the private information of the agent is not persistent

or the subsequent principals observes the outcomes of previous stages with some noise.

There are some questions that need further investigation. The most interesting one is

to understand whether under some ordering assumptions on the type space, like Spence-

Mirelees condition, an optimal contract can be formulated as a recursive problem.
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Appendix

Public Communication

Proof of Proposition 1
To prove proposition 1, we derive the �rst order conditions implied by incentive e¢ -

ciency in the following lemma. Then we apply the result of the lemma to establish the

main result of Proposition 1.

Lemma 3 Let (x�N�2; �N�1; pN�1; �N�1
��MN�1) be incentive e¢ cient. Then there exists

�N�1 = (�N�1;1; :::; �N�1;TN�1) 2 R
TN�1 such that

X
�t2�N�1

pN;t(m)

Z
�N�1

vi;t(x
�
N�2; xN�1(m); xN(xN�1; pN))d�N�1(m)

=
X

�t2�N�1

�N�1;t
pN�1;t

pN�1;t(m) �N�1 � almost everywhere.

Proof of Lemma 3. Let K = fK1; :::; Kk; :::g be a �� partition of MN�1: Then for

any � = (�1; :::; �k; :::) such that

�k � 0 for all Kk 2 K;
X
k

�k�N�1;t(Kk) = 1 for all �t 2 �N�1: (15)

we can de�ne a new reporting strategy �0N�1 to PN�1 by setting

�0N�1;t(H) �
X
k

�k�N�1;t(H \Kk)

for all �t 2 �N�1 and H 2 MN�1: Indeed, (15) implies that �0N�1;t 2 SN�1 for all

�t 2 �N�1:
Next we prove that incentive feasibility of (x�N�2; �N�1; pN ; �N�1

��MN�1) implies that

(x�N�2; �
0
N�1; pN ; �N�1

��MN�1) is incentive feasible: Optimality of �N�1 implies thatZ
�N�1

uN�1;t(x
�
N�2; xN�1(m); xN(pN(m); xN�1(m)))d�N�1(m) (16)

= UN�1;t(x
�
N�2; �N�1; pN ; �N�1

��MN�1) �N�1;t � almost everywhere.
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Therefore,

UN�1;t(x
�
N�2; �

0
N�1; pN ; �N�1

��MN�1) (17)

=
X
k

�k

Z
Kk

Z
�N�1

uN�1;t(x
�
N�2; xN�1(m); xN(pN(m); xN�1(m)))d�N�1(m)d�N�1;t(m)

= UN�1;t(x
�
N�2; �N�1; pN ; �N�1

��MN�1)

Hence, �0N�1;t maximizes A�s expected payo¤ and satis�es (3). To verify that �
0
N�1;t is

consistent with the Bayes rule, consider any H 2 MN�1 and let Hk � H \Kk. Then by

condition (5) Z
Hk

pN;t(m)d�N�1 = pN�1;t�N�1;t(Hk);

whenever �N�1(Hk) > 0: Thus,Z
H

pN;t(m)d�
0
N�1 =

X
k

Z
Hk

pN;t(m)�kd�N�1 =
X
k

pN�1;t�k�N�1;t(Hk) = pN�1;t�
0
N�1;t(H);

and the consistency with the Bayes rule is satis�ed.

Given (x�N�2; �
0
N�1; pN ; �N�1

��MN�1), PN�1 obtains the payo¤X
k

�k
X
�N�1

pN�1;t

Z
Kk

Z
�N�1

vN�1;t(x
�
N�2; xN�1(m); xN(pN(m); xN�1(m)))d�N�1(m)d�N�1;t(m):

Incentive e¢ ciency of (x�N�2; �N�1; pN ; �N�1
��MN�1) implies that � = (1; :::; 1; :::) maxi-

mizes this payo¤ subject to (15). Therefore, there exists �N�1 = (�N�1;1; :::; �N�1;TN�1) 2
RTN�1 such that �0 satis�es the �rst order condition:X

�N�1

pN;t

Z
Kk

Z
�(FN�1)

vN�1;t(x
�
N�2; xN�1(m); xN(pN(m); xN�1(m)))d�N�1(m)d�N�1;t(m)

=
X
�N�1

�N�1;t�N�1;t(Kk)

for all k. By the Bayes rule (5), this condition is identical toX
�N�1

Z
Kk

pN;t(m)

Z
�N�1

vN�1;t(x
�
N�2; xN�1(m); xN(pN�1(m); xN�1(m)))d�N�1(m)d�N�1(m)

=
X
�N�1

�N�1;t
pN�1;t

Z
Kk

pN(m)d�N�1(m) (18)
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for all Kk 2 K. Since the above condition (18) must hold for any arbitrary ��partition
K onMN�1, we obtain the result of the Lemma.

Proof of the main result of Proposition 1. Note that by conditions (3) and (5)

[

Z
�N�1

uN�1;t(x
�
N�2; xN�1(m); xN(pN(m); xN�1(m)))d�N�1(m) (19)

�UN�1;t(x�N�2; �N�1; pN ; �N�1
��MN�1)]pN;t(m) = 0 �N�1 � almost everywhere.

Indeed, suppose there is an H 2MN�1 such that
R
H
pN;t(m)d�N�1 > 0 andZ

�N�1

uN�1;t(x
�
N�2; xN�1(m); xN(pN(m); xN�1(m)))d�N�1(m) 6= UN�1;t(x�N�2; �N�1; pN ; �N�1

��MN)

for all m 2 H: Then (5) requires that �N�1;t(H) > 0: But since (3) implies (16), then

�1;t(H) = 0, a contradiction.

By Lemma 3 and (19) the support of �N�1 contains a set of messages M 2 MN�1

with �N�1(M) = 1 such that the following two properties are satis�ed: First, there is

�N�1 2 RTN�1 such thatX
�N�1

pN�1;t(m)

Z
�N�1

vN�1;t(x
�
N�2; xN�1(m); xN(xN�1(m); pN(m)))d�N�1(m)

=
X
�N�1

�N�1;t
pN�1;t

pN;t(m) for all m 2M:

Second,

[

Z
�N�1

uN�1;t(x
�
N�2; xN�1(m); xN(pN(m); xN�1(m)))d�N�1(m) (20)

� UN�1;t(x�N�2; �N�1; pN�1; �N�1
��MN�1)]pN;t(m) = 0 for all m 2M:

Since �N�1(M) = 1 implies �N�1;t(M) = 1; it follows form the Bayes rule thatZ
M

pN(m)d�N�1 = pN�1; (21)

where pN(m) = (pN;t(m))�t2�N�1 :

33



De�ne P = fp(m) j m 2Mg and let co(P ) denote the convex hull of P . By a theorem
of Rubin and Wester (1958), (21) implies that pN�2 2 co(P ): Since co(P ) lies in the

hyperplane fp 2 RTN�1 j �ipi = 1g; it may be represented as a set in RTN�1�1. Therefore,

by Caratheodory�s theorem, pN�2 can be written as a convex combination of jM 0j � TN�1
linearly independent vectors p(m1); :::; p(mjM 0j) in P . Thus there exists � = (�1; :::; �jM 0j)

such that �h � 0, �h�h = 1 and X
h

�hpN(mh) = pN�1: (22)

Consider a message setM 0 = fm1; :::;mjM 0jg associated with vectors p(m1); :::; p(mjM 0j)

and de�ne a new reporting strategy for the agent by setting

�0N�1;t(H) =
X
mh2H

�t
pN�1;t

pN;t(mh): (23)

By (22), �0N�1 2 SN�1: The vectors �0N�1(mh); h = 1; :::; jM 0j are linearly independent
because the vectors p(mh); h = 1; :::; jM 0j ; are linearly independent.
The next step is to show that (x�N�2; �

0
N�1; pN ; �N�1

��M 0
N�1) is incentive feasible. First,

�N remains an optimal strategy of PN because (x
�
N�2; �

0
N�1; pN�1; �N�1

��M 0
N�1) and

(x�N�2; �N�1; pN�1; �N�1
��MN�1) di¤er only in the reporting strategy of the agent

to PN�1. Second, �0N�1 is an optimal reporting strategy for the agent. Note that

�0N�1;t(M
0) = 1 and �0N�1;t(mh) > 0 only if pN;t(mh) > 0: Since M 0 � M , together

with (20) these conditions implyX
h

Z
�N�1

�0N�1;t(mh)uN�1;t(x
�
N�2; xN�1(mh); xN(pN(mh); xN�1(mh)))d�N�1(mh)

= UN�1;t(x
�
N�2; �N�1; pN�1; �N�1

��MN�1)

�
Z
M

Z
�N�1

uN�1;t(x
�
N�2; xN�1(mh); xN(pN(mh); xN�1(mh)))d�N�1(m)d�

00

N�1;t(m)

for all �
00

N�1;t 2 SN�1:

Third, (x�N�2; �
0
N�1; pN�1; �N�1

��MN�1) satis�es the Bayes rule because �N�1(M 0) = 1

and

pN;t(mh)
X
j

pN�1;j�
0
N�1;j(mh) = �0N�1;t(mh)

pN�1;t
�h

X
j

�hpN;j(mh)

= pN�1;t�
0
N�1;t(mh) for all mh 2M 0:
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Finally, (x�N�2; �
0
N�1; pN ; �N�1

��MN�1) and (x�N�2; �N�1; pN ; �N�1
��MN�1) are payo¤

equivalent. PN obtains the same payo¤ because (x�N�2; �
0
N�1; pN ; �N�1

��MN�1) and

(x�N�2; �N�1; pN ; �N�1
��MN�1) di¤er only in the agent�s strategy to PN�1. Suppose

that VN�1(x�N�2; �N�1; pN ; �N�1
��MN�1) 6= VN�1(x�N�2; �0N�1; pN ; �N�1

��MN�1). Incentive

e¢ ciency of (x�N�2; �N�1; pN ; �N�1
��MN�1) implies

VN�1(x
�
N�2; �N�1; pN�1; �N�1

��MN�1) > VN�1(x
�
N�2; �

0
N�1; pN�1; �N�1

��MN�1):

Let us denote
R

IN�1

�
P
�N�1

R
MN�1

R
�N�1

. Therefore, by Lemma 3 and �0(M 0) = �0(M) = 1;

we obtainZ
IN�1

pN;t(m)VN�1;t(x
�
N�2(m); xN�1(m); xN(xN�1(m); pN(m)))d�N�1d�N�1

=
X
�N�1

Z
MN�1

�N�1;t
pN�1;t

pN;t(m)d�N�1(m) (24)

>
X
�N�1

Z
MN�1

�N�1;t
pN�1;t

pN;t(m)d�
0
N�1(m)

=

Z
IN�1

pN;t(m)VN�1;t(x
�
N�2(m); xN�1(m); xN(xN�1(m); pN(m)))d�N�1(m)d�(m):

By the Bayes rule (5),Z
MN�1

pN;t(m)d�N�1(m) = pN�1;t =

Z
MN�1

pN;t(m)d�
0
N�1(m):

Thus the inequality (24) cannot hold. A contradiction. Hence (x�N�2; �
0
N�1; pN ; �N�1

��MN�1)

and (x�N�2; �N�1; pN ; �N�1
��MN�1) are payo¤ equivalent.

Proof of Proposition 2. Because we can simply delete fromMN�1 any H 2MN�1

such that �N�1(H) = 0; Proposition 1 guarantees that there exists a mechanism �
0
N�1 =

(M 0
N�1; �

0
N�1) with

��M 0
N�1

�� � TN�1 and an incentive feasible (x�N�2; �0N�1; p0N�1; �0N�1��M 0
N�1)

which is payo¤-equivalent to (x�N�2; �N�1; pN�1; �N�1
��MN�1): Let
M 0

N�1
= [�0N�1(mh)]mh2M 0

N�1

denote the TN�1�
��M 0

N�1
�� matrix with column vectors �0N�1(mh); h = 1; :::;

��M 0
N�1

�� : Note
that by Proposition 1 the column vectors of 
M 0 are linearly independent.

De�ne the correspondence D : M 0 ) �N�1 by D(mh) = f�t j �0N�1;t(mh) > 0g. It
follows that D(H) =

S
Hf�t j �0N�1;t(mh) > 0;mh 2 Hg. We claim that jD(H)j � jHj
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for all H � M 0
N�1: Indeed, �x H � M 0

N�1 and consider the TN�1 � jHj matrix 
H =

[�0N�1(mh)]mh2M 0
N�1
: Since the matrix 
M 0

N�1
consists of linearly independent column vec-

tors, this also holds for 
H . Thus, rank(
H) = jHj : Note further that the matrix 
H has
only jD(H)j non-null row vectors. This implies that rank(
H)� jD(H)j : Hence it follows
that jD(H)j � jHj. By the Marriage theorem, there exists a mapping d :M 0

N�1 ! �N�1

with d(mh) 2 D(mh) and the property that d(mh) = d(mk) implies mh = mk.

We now use d(�) to construct a mapping c : �N�1 ! M 0
N�1 in the following way.

Since the mapping d(�) is invertible we can set c(d(mh)) = mh for each mh 2 M 0
N�1: As

d(mh) 2 D(mh); we have �0N�1;t(c(�t)) > 0 for all �t 2 �0N�1 � fd(mh) j mh 2M 0
N�1g: To

each �t =2 �0N�1 we can assign an arbitrary c(�t) 2M 0
N�1 such that �

0
N�1(c(�t)) > 0: Such

c(�t) exists because �h�0N�1(mh) = 1: Thus the mapping c(�) satis�es �N�1;t(c(�t)) > 0
for all �t 2 �. Moreover, as

S
�0N�1

c(�t) =M
0
N�1 we have that

S(mh) � f�t j mh = c(�t)g 6= ; for all mh 2M 0
N�1:

Now we replace the mechanism (M 0
N�1; �

0
N�1) and (x

�
N�2; �

0
N�1; p

0
N�1; �

0
N�1

��M 0
N�1) by

a direct mechanism (�N�1; �
d
N�1) and a (x

�
N�2; �

d
N�1; p

d
N�1; �

d
N�1

���N�1) that is de�ned
in the following way:

�dN�1;t(�j) =
�0N�1;t(c(�j))

jS(c(�j))j
; pd(�j) = p

0(c(�j)); �dN�1(�j) = �
0
N�1(c(�j)): (25)

Note that �dN�1;t(�j) > 0 for all �t 2 �N�1. Thus, to complete the proof it is su¢ cient to
show that (x�N�2; �

d
N�1; p

d
N�1; �

d
N�1

���N�1) is incentive feasible and payo¤ equivalent to
(x�N�2; �

0
N�1; p

0
N�1; �

0
N�1

��M 0
N�1):

By (25), �dN�1;t(�j) =
�0N�1;t(mh)

jS(mh)j for all �j 2 S(mh). Therefore,

X
�j2�N�1

�dN�1;t(�j) =
X
h

X
�j2S(mh)

�0N�1;t(mh)

jS(mh)j
=
X
h

�0N�1;t(mh) = 1;

so that �dN�1;t de�nes a probability distribution on �N�1. Since �dN�1;j = �
0
N�1(c(�j)),

any allocation that an agent induces by some message �j 2 �N�1 under the mechanism
�dN�1 =(�; �

d
N�1) it can also induce by the message c(�j) 2 M 0

N�1 under mechanism

(M 0
N�1; �

0
N�1). Conversely, as for each mh 2 MN�1 there is a �t 2 �N�1 such that

mh = c(�t): Anything that A can induce under (M 0
N�1; �

0
N�1) it can also induce un-

der (�; �dN�1). Therefore, UN�1;t(�
d
N�1; �

d
N�1) = UN�1;t(�

0
N�1; �

0
N�1) for all �t 2 �N�1:
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Moreover, �dN�1;t(�j) > 0 if an only if �0N�1;t(c(�j)) > 0: Thus, �dN�1 satis�es condition

(3).

The principal�s belief pdN�1 is consistent with the Bayes rule (5) because

pdN�1;t(�j) =
pN�2;t�

d
N�1;t(�j)

�kpN�2;k�dN�1;k(�j)
=

pN�2;t�
0
N�1;t(c(�j))

�kpN�2;k�0N�1;k(c(�j))
= p0t(c(�j)):

Thus, under the direct mechanism the optimality of the reporting strategy of A and

the Bayes rule are satis�ed, so it is incentive feasible.

PN and A do not deviate from the original strategy (�dN ; �
d
N). First, p

d
N�1(�j) =

p0N�1(c(�j)) and �
d
N�1(�j) = �

0
N�1(c(�j)): Second, under (�

0
N�1; p

0
N�1; �

0
N�1

��M 0
N�1) the �t-

agent induces a decision �0N�1(mh) with probability �0N�1;t(mh). Under (�dN�1; p
d
N�1; �

d
N�1

���N�1)
it induces the same decision with the same probability, as��j2S(mh)�

d
N�1;t(�j) = �

0
N�1;t(mh):

Since �dN�1 is an optimal mechanism of PN�1; and replacing the original equilibrium

pro�le (�N�1; �N�1) does not change the optimal choice of PN and A at stage N; we con-

clude that (�dN�1; p
d
N�1; �

d
N�1

���N�1) and (�0N�1; p0N�1; �0N�1��M 0
N�1) are payo¤equivalent,

and

VN�1(�
d
N�1; p

d
N�1; �

d
N�1

���N�1) = VN�1(�0N�1; p0N�1; �0N�1��M 0
N�1):

Proof of Proposition 3. In Proposition 2 we establish the result for �N�1: Consider

a type �j 2 �n�N�1: From the support of the original strategy �N�1;j select some message
m 2MN�1: De�ne the direct mechanism of PN�1 as �

0
N�1(�j) = �N�1(m) and a reporting

strategy of the agent

�N�1;t(e�) = � 1; if e� = �t;
0; otherwise.

Let the posterior belief be the same as the belief for the message m; pN�1(�t) = pN�1(m).

The reporting strategy of the agent is optimal because by reporting its type it induces

the same decision as by sending the message m: The posterior belief upon observing

message �j is the same as upon observing message m: So we conclude that this extension

preserve the distribution over allocations of the original pro�le (�N�1; �N�1) also for out-

of-equilibrium types. Consequently, when PN�1 o¤ers a direct mechanism, P�N�2 and

A at preceding stages 1; :::; N � 2 do not deviate from the original equilibrium pro�le

(�N�2; �N�2).
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Private Communication

The Revelation Principle

Proof of Theorem 2. Consider an equilibrium pro�le (�; �) of � = (�;M): For some

Pi, i � 2 consider a direct mechanism

�di (xi; �t) =

Z
Mi

�i(xi j m;x�i�1)d�i;t(m)

and a reporting strategy of A

�di;t(
e�) = �

1 if e� = �t;
0 otherwise,

where �di;t(e�) is the probability to report type e� when the true type is �t.
Step 1. We �rst verify that (�di ; pi; �

d
i ; x

�
i�1
���) is incentive feasible. Indeed, �di is

an optimal reporting strategy for the agent. Suppose the reverse. Then there exists a

reporting strategy e�i : � ! �, with e�i(e� j �) > 0 at least for some e� 6= �, such that A
obtains higher expected payo¤ by manipulating its report according to e�i:X

e�2�
e�i(e���� �)Z

Fi

ui(xi; x
�
i�1; �)d�

d
i (xi j e�; x�i�1)

>

Z
Fi

ui(xi; x
�
i�1; �)d�

d
i (xi j �; x�i�1):

This condition is equivalent toX
e�2�
e�i(e���� �)Z

Mi

Z
Fi

ui(xi; x
�
i�1; �)d�i(xi j mi; x

�
i�1)d�(mi j e�; x�i�1)

=

Z
Mi

Z
Fi(x

�
i�1)

ui(xi; x
�
i�1; �)d�i(xi j mi; x

�
i�1)d

24X
e�2�
e�i(e� j �)�(mi j e�; x�i�1)

35
>

Z
Mi

Z
Fi

ui(xi; x
�
i�1; �)d�i(xi j mi; x

�
i�1)d�(mi j �; x�i�1);

which contradicts optimality of �i: Thus, �di is optimal.
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Furthermore, the pro�le (�di ; pi; �
d
i ; x

�
i�1
���) induces the same posterior beliefs as the

original pro�le

pdi;t(x
�
i ) =

pi�1;t�
d
i (xi; �t)P

j:pi�1;j>0
pi�1;j�

d
i (xi; �j)

=
pi�1;t

R
Mi
�i(xi j m;x�i�1)d�i;t(m)P

j:pi�1;j>0
pi�1;j

R
Mi
�i(xi j m;x�i�1)d�i;j(m)

= pi;t(x
�
i );

so the Bayes rule is satis�ed. Therefore, (�di ; pi; �
d
i ; x

�
i�1
���) is incentive feasible.

Step 2. The pro�le (�di ; pi; �
d
i ; x

�
i�1
���) is incentive e¢ cient. Suppose the reverse, so

that there exists another direct mechanism e�di such that Pi obtains a strictly higher payo¤
under e�di than under �di and A is indi¤erent between e�di and �di ; that isX

t

pi�1;t[Vi;t(�
d
i;t; epi; e�di ; x�i�1����)� Vi;t(�di;t; pi; �di ; x�i�1���)] > 0 (26)

and Ui;t(�di;t; epi; e�di ; x�i�1����) = Ui;t(�di;t; pi; �di ; x�i�1���):
Note that (�di ; pi; �

d
i ; x

�
i�1
���) is payo¤equivalent to the original pro�le (�i; pi; �i; x�i�1��Mi):

The reason is that it induces the same probability measure that type �t is assigned an

allocation xi:

�di;t(xi) =

Z
Mi

�i(xi j m;x�i�1)d�i;t(m) = �i;t(xi);

and it results in the same posterior beliefs pi: Then, the �rst expression in (26) can be

written asX
t

pi�1;tVi;t(�
d
i;t; pi; �

d
i ; x

�
i�1
���) =

X
t

pi�1;tVi;t(�i;t; pi; �i; x
�
i�1
��Mi)

<
X
t

pi�1;t[Vi;t(�
d
i;t; epi; e�di ; x�i�1����);

and it contradicts that (�; �) is an equilibrium pro�le. Thus, the direct mechanism (�di ; �
d
i )

of Pi is incentive e¢ cient.

In the next two steps we show that the original pro�le (��i; ��i) remains optimal for

P�i and A.

Step 3. Since �di induces the same probability distribution over allocations Fi(x
�
i�1)

and the same posterior beliefs pi, in the continuation game starting at i + 1 it remains

optimal for P+i+1 and A to follow (�
+
i+1; �

+
i+1):
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Step 4. To sustain the original equilibrium (��i�1; �
�
i�1), it may be necessary to pre-

serve the out-of-equilibrium messages in �i. Note that in the direct mechanism �di these

messages are replicated through the allocations assigned to the out-of-equilibrium types

with pi�1;t = 0. As the direct mechanism �di induces the same probability distribution

over the allocations for all types, including the out-of-equilibrium ones, then the optimal

contract of any Pk, k < j when anticipating �di is the same as when anticipating �i.

Similarly, the reporting strategy of A to Pk when anticipating a direct mechanism of Pi is

the same as when anticipating the original mechanism �i. Therefore, (�
�
i�1; �

�
i�1) remains

optimal for P�i�1 and A.

Step 5. Iterating the argument for all i = 1; :::; N; we conclude that a pro�le (�d; �d)
of direct mechanisms and incentive compatible communication strategies is incentive ef-

�cient.

Step 6. The pro�le of direct mechanisms (�d; �d) induces the sequence of beliefs and
the probability distribution over allocations x 2 X which are equivalent to the that of the

original pro�le (�; �): Therefore, (�; �) and (�d; �d) are payo¤ equivalent.

Proof of Lemma 1. Given the reporting strategy �N and the mechanism �N of the

original equilibrium pro�le, let us de�ne a direct mechanism and a reporting strategy of

the agent as

�dN(�t) =

Z
MN

�N(m)d�N;t(m);

�dN;t(
e�) =

�
1 if e� = �t;
0 otherwise.

For all types �t 2 �N , by the standard argument of the Revelation Principle, the pro�le
(�N ; �N) is incentive feasible and payo¤ equivalent to (�N ; �N). To verify that P

�
N�1

and A do not deviate form (��N�1; �
�
N�1), note that the out-of-equilibrium mechanisms

that may be necessary to sustain (�; �) are replicated in the direct mechanism (�dN ; �
d
N)

through the allocations designed for out-of-equilibrium types �t 2 �n�N :

Structure of the optimal mechanism

In the following lemma we derive the �rst order conditions implied by incentive e¢ ciency.

Then we apply the result of the lemma to establish that an original mechanism can be

replaced by a payo¤ equivalent mechanism that employs at most �N�1 allocations.
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Lemma 4 (First order condition) Let (��N�2; pN ; �N�1; �N
��FN�1) be incentive e¢ -

cient. Then there exists �N�1 = (�N�1;1; :::; �N�1;TN�1) 2 R
TN�1 such thatX

�N�1

pN;t(xN�1)

Z
�N�1

vN�1;t(xN�1; xN(xN�1; pN))d�N�1(xN�1)

=
X
�N�1

�N�1;t
pN�1;t

pN;t(m) �N�1 � almost everywhere.

Proof. Let K = fK1; :::; Kk; :::g be a �� partition of FN�1: Then for any � =

(�1; :::; �k; :::) such that

�k � 0 for all Kk 2 K;
X
k

�k�N�1;t(Kk) = 1 for all �t 2 �N�1: (27)

de�ne a new mechanism �0N�1 by setting

�0N�1;t(H) �
X
k

�k�N�1;t(H \Kk)

for all �t 2 �N�1 and H 2 XN�1: Indeed, (27) implies that �
0
N�1;t 2 �N�1 for all

�t 2 �N�1:
Incentive feasibility of (��N�2; pN ; �N�1; �N

��FN�1) implies that (��N�2; pN ; �0N�1; �N ��FN�1)
is incentive feasible: Indeed, optimality of �N�1 implies thatZ

�N�1

uN�1;t(x
�
N�2; xN�1; xN(pN ; xN�1))d�N�1(xN�1) (28)

= UN�1;t(�
�
N�2; pN ; �N�1; �N

��FN�1) �N�1;t � almost everywhere.
Consequently,

UN�1;t(�
�
N�2; pN ; �

0
N�1; �N

��FN�1) (29)

=
X
k

�k

Z
Kk

Z
�N�1

uN�1;t(x
�
N�2; xN�1; xN(pN ; xN�1))d�N�1(xN�1)

= UN�1;t(�
�
N�2; pN ; �N�1; �N

��FN�1)
Hence, �0N�1;t satis�es the incentive compatibility constraint of the agent. To verify that

�0N�1;t is consistent with the Bayes rule, consider any H 2 FN�1 and let Hk � H \Kk.

Then by condition (4)Z
Hk

pN;t(x)d�N�1 = pN�1;t�N�1;t(Hk) for all Hk 2 �N�1 with �N�1(Hk) > 0:
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Thus,Z
H

pN;t(x)d�
0
N�1 =

X
k

Z
Hk

pN;t(x)�kd�N�1 =
X
k

pN�1;t�k�N�1;t(Hk) = pN�1;t�
0
N�1;t(H);

and the consistency with the Bayes rule is satis�ed.

Given (��N�2; pN ; �
0
N�1; �N

��FN�1), PN obtains the payo¤X
k

�k
X
�N�1

pN�1;t

Z
Kk

vN�1;t(x
�
N�2; x; xN(pN ; x))d�N�1(x):

Incentive e¢ ciency of (��N�2; pN�1; �N�1; �N
��XN�1) implies that � = (1; :::; 1; :::) maxi-

mizes this payo¤ subject to (27). Therefore, there exists �N�1 = (�N�1;1; :::; �N�1;TN�1) 2
RTN�1 such that �0 satis�es the �rst order condition:X

�N�1

pN�1;t

Z
Kk

vN�1;t(x
�
N�2; x; xN(pN ; x))d�N�1(x)

=
X

t:�t2�N�1

�N�1;t�N�1;t(Kk), 8k

Bayes rule (4) implies that this condition is equivalent toX
�N�1

Z
Kk

pN�1;t(xN�1)vN�1;t(x
�
N�2; xN�1; xN(pN ; xN�1))d�N�1(xN�1)

=
X

t:�t2�N�1

�N�1;t
pN�1;t

Z
Kk

pN(xN�1)d�N�1(xN�1) (30)

for all Kk 2 K. Since the above condition holds for any arbitrary ��partitionK on FN�1,

we obtain the result of the Lemma.

Proposition 7 (Finite support of the mechanism) Let (pN�1; �N�1; �N
��FN�1) be in-

centive e¢ cient. Then there exists an incentive feasible (pN�1; �
0
N�1; �N

��F 0N�1) and a
�nite set F 0N�1 � FN�1 with

��F 0N�1�� � TN�1 and �0N�1(F 0N�1) = 1 such that
(pN�1; �N�1; �N

��FN�1) and (pN�1; �0N�1; �N ��F 0N�1) are payo¤-equivalent. Moreover,
the vectors �0N�1(xh) = (�

0
N�1(xh); :::; �

0
N�1(xh)), xh 2 F 0N�1; h = 1; :::;

��F 0N�1�� are linearly
independent.
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Proof. Optimality of �N�1 and the Bayes rule imply that

[

Z
�N�1

uN�1;t(x
�
N�2; xN�1; xN(pN ; xN�1))d�N�1(xN�1) (31)

�UN�1;t(��N�2; pN ; �N�1; �N
��FN�1)]pN;t(xN�1) = 0 �N�1 � almost everywhere.

Indeed, suppose there is an H 2 FN�1 such that
R
H
pN;td�N�1 > 0 andZ

�N�1

uN�1;t(x
�
N�2; xN�1; xN(pN ; xN�1))d�N�1(xN�1) 6= UN�1;t(��N�2; pN ; �N�1; �N

��FN�1)
for all x 2 H: Then (4) requires that �N�1;t(H) > 0: But optimality of �N�1 implies

condition (28). Consequently, �N�1;t(H) = 0. A contradiction.

Lemma 4 and condition (31) imply that support of �N�1 contains a set of allocations

XN�1 2 XN�1 with �N�1(XN�1) = 1 such that the following two conditions are satis�ed:

First, there exists �N�1 2 RTN�1 such thatX
�N�1

Z
Kk

pN;t(xN�1)vN�1;t(xN�1; xN(pN ; xN�1))d�N�1(xN�1)

=
X
�N�1

�N�1;t
pN�1;t

Z
Kk

pN(xN�1)d�N�1(xN�1) for 8xN�1 2 XN�1:

Second,

[

Z
�N�1

uN�1;t(xN�1; xN(pN ; xN�1))d�N�1(xN�1) (32)

�UN�1;t(��N�2; pN ; �N�1; �N
��FN�1)]pN�1;t(xN�1) = 0 for 8xN�1 2 XN�1:

Since �N�1(XN�1) = 1 implies �N�1;t(XN�1) = 1; the Bayes rule implies thatZ
XN�1

pN(xN�1)d�N�1 = pN�1; (33)

where pN�1(xN�1) = (pN�1;t(xN�1))
TN�1
t=1 :

De�ne P = fp(xN�1) j xN�1 2 XN�1g and let co(P ) denote the convex hull of P . By a
theorem of Rubin and Wester (1958), it follows from (33) that pN�1 2 co(P ): Since co(P )
lies in the hyperplane fp 2 RTN�1 j �ipi = 1g; it may be represented as a set in RTN�1�1.
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Therefore, by Caratheodory�s theorem, pN�1 can be written as a convex combination of

jF 0j � j�N�1j linearly independent vectors p(x1); :::; p(xjF 0N�1j) in P . Thus there exists
� = (�1; :::; �jX0j) such that �h � 0, �h�h = 1 andX

h

�hpN(xh) = pN�1: (34)

Consider a set of allocations F 0N�1 = fx1; :::; xjF 0N�1jg associated with vectors p(x1); :::; p(xjF 0N�1j)
and de�ne a new mechanism by setting

�0N�1;t(H) =
X
xh2H

�t
pN�1;t

pN;t(xh): (35)

By (34), �0N�1 2 �N�1: The vectors �
0
N�1(xh); h = 1; :::; jX 0j are linearly independent

because the vectors p(xh); h = 1; :::; jX 0j ; are linearly independent.
(pN�1; �N�1; �N

��F 0N�1) is incentive feasible. First, �N remains an optimal strategy of
PN : Second, �

0
N�1 is optimal for PN�1. Note that �

0
N�1;t(F

0
N�1) = 1; and �

0
N�1;t(xh) > 0

only if pN;t(xh) > 0: F 0N�1 � FN�1 and (32) implyX
h

uN�1;t(x
�
N�2; xN�1; xN(pN ; xN�1))�

0
N�1(xh)

= UN�1;t(�
�
N�2; pN ; �N�1; �N

��FN�1)
�

Z
�N�1

uN�1;t(x
�
N�2; xN�1; xN(pN ; xN�1))d�

00
N�1(x)

for all �
00

N�1;t 2 �N�1:

So, �0N�1 satis�es agent�s incentive compatibility constraint. Third, (�
�
N�2; pN ; �

0
N�1; �N

��FN�1)
satis�es the Bayes rule because �N�1(F

0
N�1) = 1 and

pN;t(xh)
X
j

pN�1;j�
0
N�1;j(xh) = �0N�1;t(xh)

pN�1;t
�h

X
j

�hpN;j(xh)

= pN�1;t�
0
N�1;t(xh) for all xh 2 X 0:

(pN�1; �N�1; �N
��F 0N�1) and (pN�1; �N�1; �N ��F 0N�1) are payo¤ equivalent. For each

given outcome of �0N�1 PN obtains the same payo¤ as under the original mechanism

�0N�1. Suppose that UN�1(pN�1; �N�1; �N
��FN�1) 6= UN�1(pN�1; �

0
N�1; �N

��FN�1). Be-
cause (pN�1; �N�1; �N

��FN�1) is incentive e¢ cient, it must be that UN�1(pN�1; �N�1; �N ��XN�1) >
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UN�1(pN�1; �
0
N�1; �N

��XN�1). By Lemma 4 and condition �
0
(F 0N�1) = �

0
(FN�1) = 1; we

obtain X
�N�1

Z
FN�1

pN�1;t(x)UN�1;t(xN�1; xN(xN�1; pN�1))d�N�1(x)

=
X
�N�1

Z
FN�1

�N�1;t
pN�2;t

pN�1;t(x)d�N�1(x) (36)

>
X
�N�1

Z
FN�1

�N�1;t
pN�2;t

pN�1;t(x)d�
0
N�1(x)

=
X
�N�1

Z
FN�1

pN�1;t(x)UN�1;t(xN�1; xN(xN�1; pN�1))d�
0
N�1(x);

Bayes rule (5) impliesZ
XN�1

pN�1;t(x)d�N�1(x) = pN�2;t =

Z
XN�1

pN�1;t(x)d�
0
N�1(x);

thus the inequality (36) cannot hold. A contradiction. Hence (pN�1; �N�1; �N
��FN�1)

and (pN�1; �
0
N�1; �N

��FN�1) are payo¤ equivalent. Therefore, for any incentive e¢ cient
mechanism with an arbitrary support there exists a payo¤ equivalent mechanism that

employs at most j�N�1j allocations.
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