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Abstract

This paper reviews a framework for numerically analyzing dynamic interactions in im-
perfectly competitive industries. The framework dates back to Ericson and Pakes [1995.
Review of Economic Studies 62, 53–82], but it is based on equilibrium notions that had
been available for some time before, and it has been extended in many ways by different
authors since. The framework requires as input a set of primitives which describe the
institutional structure in the industry to be analyzed. The framework outputs profits and
policies for every incumbent and potential entrant at each possible state of the industry.
These policies can be used to simulate the distribution of sample paths for all firms from
any initial industry structure. The sample paths generated by the model can be quite dif-
ferent depending on the primitives, and most of the extensions were designed to enable
the framework to accommodate empirically relevant cases that required modification of
the initial structure. The sample paths possess similar properties to those observed in
(the recently available) panel data sets on industries. These sample paths can be used
either for an analysis of the likely response to a policy or an environmental change, or
as the model’s implication in an estimation algorithm. We begin with a review of an
elementary version of the framework and a report on what is known about its analytic
properties. Much of the rest of the paper deals with computational issues. We start with
an introduction to iterative techniques for computing equilibrium that are analogous
to the techniques used to compute the solution to single agent dynamic programming
problems. This includes discussions of the determinants of the computational burden
of these techniques, and the mechanism implicitly used to select an equilibrium when
multiple equilibria are possible. We then outline a number of techniques that might be
used to reduce the computational burden of the iterative algorithm. This section includes
discussions of both the implications of differences in modeling assumptions used in the
alternative techniques, and a discussion of the likely relevance of the different tech-
niques for different institutional structures. A separate section reports on a technique
for computing multiple equilibria from the same set of primitives. The paper concludes
with a review of applications of the framework and a brief discussion of areas where
further development of the framework would seem warranted.

Keywords

Dynamic oligopoly, Markov perfect equilibrium, Computational techniques, Multiple
equilibria, Applications

JEL classification: C73, C63, L13
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1. Introduction

The applied analysis of dynamic interactions in imperfectly competitive industries is
just beginning. This paper reviews a framework which has been developed to facilitate
this analysis. The framework dates back to Ericson and Pakes (1995) (hereafter EP),
and has been improved and generalized by a series of authors since that article. The EP
framework worked to integrate a set of baseline facts from the empirical literature with
notions of equilibrium from the theoretical literature.

The facts, drawn in part from the newly available panel data sets on the evolu-
tion of firms and industries, made it clear that for a framework to be rich enough
to be taken to data it had to allow for heterogeneity among firms within a market
(even for very narrowly defined markets), both firm and market (or sometimes indus-
try) specific sources of uncertainty, and entry and exit [see, e.g., Dunne, Roberts and
Samuelson (1988) and Davis and Haltiwanger (1992)]. The firm specific uncertainty
is needed to account for the fact that we often see both simultaneous entry and exit
and rank reversals in the fortunes of firms within a market (no matter how we define
“fortunes”). The market (and/or) industry specific uncertainty is needed to rationalize
the fact that often the firms competing in a given market (or industry) are subject to
changes in costs or demand conditions which cause their profits to be positively corre-
lated.

The EP framework is designed to track an oligopolistic industry over time. In each
period, incumbent firms decide whether to remain in the industry and how much to in-
vest, and potential entrants decide whether to enter the industry. Once the investment,
entry, and exit decisions are made, firms compete in the product market. Firm hetero-
geneity is accounted for by encoding all payoff-relevant characteristics of a firm in its
“state”. Typically a firm’s state describes its production capacity, cost structure, and/or
the quality of its product. A firm is able to change its state over time through invest-
ment, and there is both firm and industry specific variability in the outcomes of the
investment. This can generate both diversity of fortunes of seemingly similar firms and
positive correlation in their profits.

Formally the EP framework is a dynamic stochastic game with a discrete state space.
Dynamic stochastic games have a long tradition in economics. Dating back to Shapley
(1953), these games have become central to the analysis of strategic interactions among
forward-looking players in dynamic environments. See Filar and Vrieze (1997) and
Basar and Olsder (1999) for textbook treatments.1

The equilibrium notion used in the EP framework is that of Markov perfect equilib-
rium. For applied work there were at least two virtues of the Markov perfect notion. First
it involved familiar notions, as Markov processes are used intensively in applied work in

1 This approach differs from continuous-time games with a continuum of states which date back to Isaacs
(1954) (zero-sum games) and Starr and Ho (1969) (non-zero-sum games). See Basar and Olsder (1999) for a
standard presentation of differential games and Dockner et al. (2000) for a survey of applications.
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related fields. Perhaps more important, however, was the fact that Markov perfect equi-
libria deliver an empirically tractable way of analyzing outcomes. That is, they allow us
to condition on a current state, hopefully a state that we might be able to read off the
data, and generate a probability distribution of the subsequent state. That distribution
can then be used for either estimation or for numerical analysis.2

The Markov perfect notion was used intensively in an influential set of theory papers
examining dynamic issues in oligopolistic settings by Maskin and Tirole (1987, 1988a,
1988b). One lesson from these articles was just how rich a set of outcomes could be
generated even from extremely stylized environments; far too stylized for anyone to
think of using them to closely approximate behavior in any market. Partly this was the
result of the possibility of multiple equilibria, a topic we examine in some detail below.
However even more evident was the fact that very different types of behavior could be
generated by changes in the primitives of the problem (the nature of the demand or cost
functions, or the characteristics of investment processes allowed). Moreover the diverse
patterns of outcomes illustrated by different industry studies reinforced the impression
that, depending on the details of the institutional structure, different industries could
have very different evolutionary patterns.

The EP framework copes with this result by providing a framework with an ability to
“plug in” different primitives, and then numerically analyze their result. The framework
delivers very little in the way of analytic results of applied interest; i.e. just about any-
thing can happen. Indeed by adopting the framework the researcher essentially gives
up on analytic elegance in favor of an ability to numerically analyze the more com-
plex situations that might better approximate what we seem to observe in real data sets.
Theoretical results from stylized environments are often used at a later stage as a guide
to understanding the economics underlying the phenomena generated by the numerical
results.

This paper provides an introduction to the EP framework and then considers issues
that arise in using it to numerically analyze results from different specifications for its
primitives. We begin by outlining the model in Section 2, and then, in Section 3, summa-
rize what is known about questions of existence of equilibrium, the characteristics of the
equilibrium when it does exist, and the potential for multiple equilibria. Section 4 pro-
vides an introduction to techniques for computing an equilibria, and then considers their
computational burden. Section 5 considers techniques for alleviating this computational
burden. In Section 6 we consider what is known about computing multiple equilibria
(from the same set of primitives). Section 7 reviews applications and extensions of the
framework. Section 8 points out some (of the many) topics that require further study,
and Section 9 concludes.

2 In fact there is some debate as to whether the concept of Markov perfect equilibrium restricts policies and
outcomes in untestable ways, and hence weaker notions of equilibria, such as the notion of self-confirming
equilibrium in Fudenberg and Levine (1993), are more appropriate for applied work. This is largely a topic
beyond the scope of this paper, but we come back to a related issue in Section 5 below, where we provide a
way of computing a weaker equilibrium notion.
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2. Model

The EP framework is designed to capture the evolution of an industry with heteroge-
neous firms. The model is dynamic, time is discrete, and the horizon is infinite. There
are two groups of firms, incumbent firms and potential entrants. An incumbent firm has
to decide each period whether to remain in the industry and, if so, how much to invest.
A potential entrant has to decide whether to enter the industry and, if so, how much to
invest. We assume that entry, exit, and investment decisions are made simultaneously at
the beginning of the period.

Once these decisions are made, product market competition takes place. For simplic-
ity, we assume that the price or quantity that a firm sets in the product market has no
effect on the dynamics of the industry. This reflects the traditional “static–dynamic”
breakdown in teaching IO. Due to this “static–dynamic” breakdown, the profit function
can be computed “off line” and fed into the algorithm for computing the equilibrium of
the dynamic stochastic game. Hence, we essentially treat the per-period profit function
as a primitive of the dynamic stochastic game.

For the reader who is familiar with this literature, we note that the model below
differs from the model in EP in a few details. First, we treat setup costs and scrap values
as privately known random variables in order to ensure the existence of an equilibrium.3

Second, we assume that exit decisions are implemented after incumbent firms compete
in the product market. That is, while entry, exit, and investment decisions are made at
the beginning of the period, we assume that their realizations occur at the end of the
period. Hence, a firm’s current profit from product market competition is completely
determined by the current state of the industry. Third, when we allow more than one
potential entrant per period to come into the industry we assume that entry decisions,
like exit decisions, are made simultaneously. Moreover, we allow a potential entrant to
make an initial investment in order to improve the odds that it comes into industry in a
more favorable state. Most of these changes make the model easier to compute.

Incumbent firms Incumbent firm i is described by its state ωi ∈ Ω . EP assume that
the state takes on integer values and provide conditions which insure that there are finite
upper and lower bounds to the states that can occur in equilibrium (see Section 3.2 for
details). Thus, without loss of generality, we take Ω = {1, 2, . . . , ω̄}. Typically the state
of a firm encodes the characteristics of the products the firm sells or of the production
process used to produce those products (e.g., the firm’s capital stock or productivity),
but it may also include variables that are not as directly “payoff relevant” (as, e.g., in
models of collusion, see Section 7.5). A firm is able to change its state over time through
its investment xi � 0. While a higher investment today is no guarantee of a more

3 Pakes and McGuire (1994) suggest treating a potential entrant’s setup cost as a random variable to over-
come convergence problems in their algorithm. Gowrisankaran (1995) is the first to make the connection
between existence of equilibrium and randomization of both entry and exit decisions and Doraszelski and
Satterthwaite (2003) provide a formal proof.
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favorable state tomorrow, it does ensure a more favorable distribution over future states.
Since a firm’s transition from one state to another is subject to an idiosyncratic shock,
there is variability in the fortunes of firms even if they carry out identical strategies. This
variability in outcomes is necessary for the model to be able to rationalize the data on
the evolution of firms.

Turning from investment to exit, we assume that at the beginning of each period each
incumbent firm draws a random scrap value from a distribution F(·). Scrap values are
independently and identically distributed across firms and periods.4 Incumbent firm i

learns its scrap value φi prior to making its exit and investment decisions, but the scrap
values of its rivals remain unknown to it. If the incumbent decides to exit the industry,
it collects its scrap value φi and perishes. Since this decision is conditioned on the
privately known φi , it is a random variable from the perspective of other firms, and we
use ri to denote the probability that incumbent firm i remains in the industry.

Potential entrants In addition to incumbent firms, there are potential entrants. Entry
has been treated differently in different papers. This proliferation of entry models is
largely because there is no agreement, and very little in the way of empirical guidance,
on the appropriate way to model entry; indeed this is one of our suggested directions
for future research (see Section 8). For concreteness we assume here that there is a
finite number E of potential entrants in each period and they make simultaneous entry
decisions.

Potential entrants are short-lived and base their entry and investment decisions on
the net present value of entering today; potential entrants do not take the option value
of delaying entry into account. At the beginning of each period each potential entrant
draws a random setup cost from a distribution Fe(·). Like scrap values, setup costs are
privately known and independently and identically distributed across firms and periods.
If potential entrant i enters the industry, it incurs its setup cost φe

i and chooses its initial
investment xe

i � 0. It takes the entrant a period to set up so it does not earn profits until
the next period. In that period the entrant becomes an incumbent with an initial state
whose distribution depends on xe

i . We use re
i to denote the probability that potential

entrant i enters the industry.

States At any point in time the industry is completely characterized by the list of states
of the incumbent firms.5 We refer to ω ≡ (ω1, . . . , ωn) as the state of the industry or as

4 In all the models that have been computed to date the random draws on scrap values are assumed to be
independent over time. If this were not the case, then a firm’s scrap value and its rivals’ beliefs about it would
become state variables of the model.
5 To be precise, after incumbent firms and potential entrants have learned the realization of their scrap value

and setup cost for the period, respectively, a complete description of the industry requires a list of scrap value
and setup cost in addition to a list of states of the incumbent firms. Since these additional state variables
would add to the computational burden, we integrate out over them. In effect, this means that we write down
the equations that characterize the equilibrium before firms learn their realizations.
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the “industry structure”. The set of possible industry structures is

S = {
(ω1, . . . ωn): ωi ∈ Ω, n � n̄

}
,

where n is the number of currently active firms and n̄ is the maximum number of firms
that are ever active in the industry. We adopt the usual notation for partitioning vectors,
e.g., if ω = (ω1, . . . , ωn), then ω−i = (ω1, . . . , ωi−1, ωi+1, . . . , ωn).

In order to simplify the modeling of entry and exit, it is convenient to use a special
state, say state ∅. This is the state from which an entrant enters or to which an exitor
exits.

Symmetry and anonymity As does virtually all the applied literature, we restrict at-
tention to models with symmetric and anonymous primitives and focus on equilibria in
which values (i.e., payoffs) and policies (i.e., strategies) are also symmetric and anony-
mous.

We say that a set of functions {fi(·)}ni=1 is symmetric if

fi(ωi, ω−i ) = fj (ωi, ω−i )

for all indices i and j . Hence, there is no need to index the functions by i and j and we
simply write f (·) from hereon. The function f (·) is anonymous (a.k.a., exchangeable)
if

f (ωi, ω−i ) = f (ωi, ωπ(−i))

for all permutations π(−i) of the indices in −i.
The importance of the symmetry and anonymity assumptions for applied work is that

they insure that all relevant differences among firms are encoded in the firms’ states (in-
cluding possible differences in “types” of firms). This allows us to connect differences in
equilibrium responses among firms to differences in the characteristics of those firms.6

Symmetry and anonymity reduce the size of the state space. Without symmetry and
anonymity S grows as an exponential in n̄, i.e., its cardinality (#S) is greater than ω̄n̄.
Once we restrict attention to symmetric and anonymous games the relevant state space
grows as a polynomial in n̄. That is, symmetry and exchangeability enables us to restrict
the state space to

S◦ ≡ {
(ω1, ω2, . . . , ωn): ω1 ∈ Ω, ω2 � ω3 � · · · � ωn, n � n̄

} ⊂ S,

where ⊂ is notation for a proper subset.

6 In general one could be concerned with asymmetric and non-anonymous equilibria even in symmetric
and anonymous games. The burden on applied work then becomes much greater. On the other hand, once
we define the state variables of the problem the symmetry and anonymity assumptions should, at least in
principle, be testable. Of course if the test rejects we are left with the problem of distinguishing whether
the rejection is due to a misspecification of the state variables or the inappropriateness of the equilibrium
assumptions.
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Given symmetry and anonymity we can characterize industry structures more com-
pactly as a set of “counting measures”, i.e., as vectors of positive integers in which each
integer represents the number of firms in state ω ∈ Ω . Formally, if Z+ is the set of
non-negative integers then the state space can also be written as

S◦ =
{

(ωi, s): ωi ∈ Ω, s = (s1, . . . , sω̄), sω ∈ Z+,
∑
ω∈Ω

sω � n̄

}
.

Typically a program used to compute an equilibrium stores the detail it needs on the
different industry structures in locations which are one-to-one with the elements of S◦.
However the program has to compute continuation values by integrating over possible
future states from given initial states. Since the same future industry structure can arise
from two different sets of firm-specific outcomes, it is convenient to compute continu-
ation values by summing the probabilities of all possible firm-specific outcomes from
that state.7 As a result when we compute the state-to-state transitions we use the less
concise representation of the state space, and for that reason we will use it here also.

Timing We assume that all decisions (pricing, investment, entry, and exit) are made
as a function of the state of the industry at the beginning of the period. For simplicity
we also assume that incumbents firms that decide to exit compete in the product market
before they exit.8 During the period the outcomes of the investment process are realized,
potential entrants enter, and incumbent firms exit. At the end of the period the state of
the industry is updated with the results of these processes.

Throughout we use ω to denote the state of the industry at the beginning of the period
and ω′ to denote its state at the end of the period (after the state-to-state transitions are
realized). Firms observe the state at the beginning of the period as well as the outcomes
of the entry, exit, and investment decisions during the period.

Product market competition Let π(ωi, ω−i ) denote the current profit of incumbent
firm i from product market competition when the industry is in state ω. Until we get to
our discussion of extensions to the basic framework (our Section 7) we treat this per-
period profit function as a primitive of the dynamic stochastic game. Up to “regularity
conditions” (which we come back to when they are needed, in our Section 3) the EP

7 The alternative here would be to explicitly formulate the multinomial formula for the probabilities of
vectors of outcomes for a firm’s competitors. This would undoubtedly be the efficient way of computing
continuation values if the number of firms was large enough, but for the number of firms typical for current
applications the savings in the number of elements in the summand does not compensate for the computational
burden of setting up the multinomial probabilities.
8 If exitors did not compete in the product market in the period they exit, then we would have to use expected

profits as our profit measure where the expectation takes account of the exit decisions of a firm’s competitors.
Similarly, if we were to amend our earlier assumption and allow entrants to compete in the product market in
the period they enter, then we would have to compute expected profits where the expectation takes account of
entry decisions.
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framework leaves the specification the profit function to the analyst. This typically re-
quires the researcher to specify a demand system, a cost function, and an equilibrium
assumption.

The existing literature has used a variety of different specifications including: price
competition with differentiated products where a firm’s state indexes the quality of its
product [Pakes and McGuire (1994)]; price competition with differentiated products
where a firm’s state represents the share of consumers who are aware of the firm’s
product [Doraszelski and Markovich (2006)]; and quantity or price competition with
homogeneous products where a firm’s state determines its cost schedule through ei-
ther its capacity or its capital stock [Berry and Pakes (1993), Gowrisankaran (1999),
Besanko and Doraszelski (2004)]. It is important to keep in mind that the actual dynam-
ics of the equilibria we compute (and no doubt of data on actual industries) depend on
the properties of the per-period profit function in complex ways that we are only be-
ginning to understand [see, e.g., Besanko and Doraszelski (2004) and Doraszelski and
Markovich (2006)].

Below we use the Pakes and McGuire (1994) quality ladder model to illustrate the
modeling of the product market. Incumbent firm i produces a product of quality ωi .
The consumers behave according to a standard discrete choice model (and so either
purchase one product during the period or use all their money on the outside alternative).
Consumer k’s utility from choosing good i is given by g(ωi)−pi +εik , where g(·) is an
increasing bounded function of ωi .9 Here g(ωi) provides the mean (across consumers)
of the utility from choice i and εik represents taste differences among consumers. The
no-purchase alternative or outside good is denoted as product 0 and has utility ε0k .
The consumer specific terms ε0k, ε1k, . . . , εnk are assumed to be independently and
identically extreme value distributed across products and consumers. As is well known
since the work of McFadden (1974) this results in the demands

qi(p1, . . . , pn; ω) = M
exp(g(ωi) − pi)

1 + ∑n
j=1 exp(g(ωj ) − pj )

,

where M > 0 is the size of the market (the measure of consumers).
Assuming a constant marginal cost of c � 0, the price of firm i in state ω solves

max
pi�0

qi(p1, . . . , pn; ω)(pi − c).

The first-order conditions are given by

0 = ∂

∂pi

qi(p1, . . . , pn; ω)(pi − c) + qi(p1, . . . , pn; ω),

9 Introducing the g(·) function is an easy way to insure profits are bounded. Specifically, Pakes and McGuire
(1994) set

g(ωi) =
{

3ωi − 4 if ωi � 5,

12 + ln(2 − exp(16 − 3ωi)) if ωi > 5.
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and have a unique solution [Caplin and Nalebuff (1991)]. The Nash equilibrium prices
are found by numerically solving the system of first-order conditions. Profits are then
computed as

π(ωi, ω−i ) = qi

(
p1(ω), . . . , pn(ω); ω

)(
pi(ω) − c

)
.

State-to-state transitions The probability that the industry transits from today’s state
ω to tomorrow’s state ω′ is determined jointly by the investment decisions of the in-
cumbent firms that remain in the industry, the decisions of potential entrants that enter
the industry, and industry-wide shocks that represent movements in the demand or cost
conditions facing the industry. Again, subject to mild regularity conditions, the primi-
tives governing these transitions can vary with what seems appropriate for the study at
hand, though as EP emphasize, to get their upper bound to Ω they use the assumption
that a firm’s state does not increase when it does not invest.

We come back to the relationship between the specification for the transition proba-
bilities and computational and modeling issues below, but for now we suffice with the
simple case where the transition probability for firm i’s state depends only on its own
investment and current state (and not on the investments or states of its competitors).
Then what the analyst has to specify is a family of probability distributions for ω′

i ; one
for each possible ωi , level of investment xi , and industry-wide shock η (these repre-
sent factor prices or demand conditions that cause correlation between the outcomes of
different firms in the same industry). Our notation for this family of distributions is

Pω′ ≡ {
p(· | ωi, xi, η): ωi ∈ Ω, xi ∈ R+, η ∈ Υ

}
,

where Υ is the set of values for η. We assume that Pω′ is stochastically increasing (in
the first-order stochastic dominance sense) in the natural order of both ωi and xi .

Industry-wide demand shocks Pakes and McGuire (1994), among others assume that
incumbent firm i’s state conditional on remaining in the industry evolves according to

ω′
i = ωi + νi − η,

where νi represents the outcome of the firm’s investment process, and hence has a dis-
tribution which is stochastically increasing in xi and independent across firms, and η

represents the improvements in the outside alternative. These improvements in the mean
utility from not purchasing any of the goods marketed occur with exogenously fixed
probabilities and affect the desirability of all goods produced in the industry. We note
that for any given application one might need to also allow for intertemporal changes in
costs, or for a second industry wide random variable which moves all firms’ marginal
costs. Then the level of costs would also become a state variable in the problem.

In Pakes and McGuire (1994) Pω′ is constructed from the family

Pν ≡ {
p(· | xi): xi ∈ R+}
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and the probabilities {p(η)}η∈Υ . In the simplest case ν ∈ {0, 1} and Pν is

(1)Pr(ν | xi) =
{ αxi

1+αxi
if ν = 1,

1
1+αxi

if ν = 0,

where α > 0 parameterizes the effectiveness of investment. This family is stochasti-
cally increasing in xi as required. To complete the specification we need to specify the
distribution of η and the simplest case here is to assume η ∈ {0, 1}, and η = 1 with
probability δ. Note that this simplistic specification can be made somewhat more realis-
tic by noting that the length of the decision making interval can be made small relative
to, say, the interval at which data becomes available. For example if the data is annual
and we assume the firm makes decisions monthly, the distribution for ω′

i given ωi is a
twelve fold convolution of the increments modeled above.

To complete the specification we note that a firm which exits does not invest and
transits to the special state ∅ with probability one. A potential entrant who enters has
the law of motion ω′

i = ωe + νi − η, where ωe ∈ Ω is an (exogenously given) initial
state and νi is distributed with the same probabilities as are given above.

Firm-specific depreciation shocks Note that in the model above the firm specific out-
come (the ν) can only increase the firm’s state, as may be appropriate for a research and
development or perhaps an advertising game. Besanko and Doraszelski (2004) among
others assume that firm i’s state evolves according to

ω′
i = ωi + νi − ηi,

where the realization of ηi is firm specific (in contrast to the industry-wide η in the
previous specification). The probabilities for νi and ηi are derived just as in the model
with industry shocks given above. That is the distribution of νi is given by a family of
distributions which are increasing in xi , and the distribution of ηi is determined by an
exogenous “breakdown” probability.

Depending on what is encoded in a firm’s state, more elaborate specifications of
firm-specific depreciation shocks may be called for. In the context of physical cap-
ital, in particular, we often think of depreciation as being proportional to the stock.
That is, absent investment, the capital stock tomorrow is with certainty a particular
fraction of the capital stock today. Since fractional values of the capital stock are not
allowed, we cannot reproduce deterministic proportional decay exactly, however there
are a number of ways of modeling decay which are similar in certain respects. One is
to assume that firm i owns ωi machines and that each machine has a probability of
δ per period of breaking down independent of other machines. Then firm i will own
anywhere from 0 to ωi machines next period, so that ω′

i is binomially distributed with
support {0, 1, . . . , ωi} (before investment is taken into account). An alternative is to
choose integer values that are on either side of the desired fraction and assign probabil-
ities of transition to them which generate the right expected decay [see, e.g., Benkard
(2004)].
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Note that since a positive outcome from the research of one firm will take profits away
from its competitors, if there were no source of correlation between the transitions of
firms within an industry, as in the model with just firm-specific shocks, the model would
predict a negative correlation between the profitability of different firms. In fact, the
profits of firms within an industry are often (though not always) positively correlated,
i.e., industry-wide shocks to demand or cost conditions often have larger impacts than
the outcomes of rivalrous investment decisions. By allowing for both firm-specific and
industry-wide shocks we let the specific application determine the profit correlations.
For notational simplicity we focus on the industry-wide shock in what follows.

An incumbent’s problem Suppose that the industry is in state ω. Incumbent firm i

solves an intertemporal maximization problem to reach its exit and investment deci-
sions. Let V (ωi, ω−i , φ) denote the expected net present value of all future cash flows
to incumbent firm i, when the industry structure is given by ω and the firm has drawn
a scrap value φ. V (ωi, ω−i , φ) is defined recursively by the solution to the following
Bellman equation:

V (ωi, ω−i , φ) = π(ωi, ω−i )

(2)+ max
{
φ, max

xi

−xi + βE
[
V (ω′

i , ω
′−i , φ

′) | ωi, ω−i , xi

]}
,

where β is the common discount factor, and where it is understood that E is the ex-
pectation operator which integrates out over the probability distribution of possible next
period values for the firm’s own state, its competitors’ states, and its scrap value condi-
tional on the current state and the firm’s choice of investment. The firm’s value consists
of the current profit from product market competition (π(ωi, ω−i )) plus the larger of
the return to exiting the industry (φ) and the continuation value for remaining in the
industry. The continuation value consists of the discounted (by β) expectation of next
period’s value minus the cost of the investment incurred in the interim.

To take the expectation required to determine its continuation value the firm must
have a perception of the likely future states of its competitors conditional on the different
possible outcomes of the industry-wide shock, η. We let the firm’s perceived probability
of the next period value of its competitors’ state (ω′−i) conditional on η be q(ω′−i |
ωi, ω−i , η). In equilibrium these perceptions will have to satisfy certain conditions, and
we will come back to these conditions below, but for now assume only that q(·) is the
distribution used by the firm. Then we can write

(3)E
[
V (ω′

i , ω
′−i , φ

′) | ωi, ω−i , x
] =

∑
ν

W(ν | ωi, ω−i )p(ν | xi),

where

W(ν | ωi, ω−i )

≡
∑
ω′−i ,η

∫
φ′

V (ωi + ν − η, ω′−i , φ
′) dF(φ′) q(ω′−i | ωi, ω−i , η)p(η).
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W(ν | ωi, ω−i ) is the expected discounted value of the firm conditional on the outcome
of its investment being ν. To obtain it we had to integrate out over the distribution of
possible outcomes for the firms’ competitors, the firm’s own future scrap value, and the
outside alternative.

Note that neither W(·) nor q(·) are primitives of the problem. As a result different
computational algorithms construct them in different ways, a point we will be much
more explicit about in the computational section below.

The important point to note now is that if we (or the agent) were to know {W(·)},
optimal behavior could be determined from a simple single agent optimizing problem.
To do so substitute Equation (3) into (2) and obtain a Kuhn–Tucker condition

(4)xi

(
β
∑

ν

W(ν | ωi, ω−i )
∂p(ν | xi)

∂xi

− 1

)
= 0 ∧ xi � 0

for the optimal xi , say x(ωi, ω−i ). Below we provide conditions where the solution to
this equation is unique, as it will be, for example, if we use the Pν in Equation (1). In
this case

(5)x(ωi, ω−i ) = max

{
0,

−1 + √
βα(W(1 | ωi, ω−i ) − W(0 | ωi, ω−i ))

α

}
if W(1 | ωi, ω−i ) � W(0 | ωi, ω−i ), and x(ωi, ω−i ) = 0 otherwise.

Next we substitute x(ωi, ω−i ) into Equation (2) and determine whether the firm con-
tinues. Letting χ(ωi, ω−i , φ) be the indicator function which takes the value of one if
the firm continues and zero otherwise we have

χ(ωi, ω−i , φ) = arg max
χ∈{0,1}

(1 − χ)φ

(6)

+ χ

(
β
∑
ν

W(ν | ωi, ω−i )p
(
ν | x(ωi, ω−i )

) − x(ωi, ω−i )

)
.

The probability of drawing a φ such that χ(ωi, ω−i , φ) = 1 determines the probability
of the firm remaining active or

(7)r(ωi, ω−i ) = F

(
β
∑
ν

W(ν | ωi, ω−i )p
(
ν | x(ωi, ω−i )

) − x(ωi, ω−i )

)
.

An entrant’s problem A potential entrant who chooses to enter must pay an entry
fee and then becomes an incumbent firm in the next period. The entrant’s decision on
whether to enter is analogous to the incumbent’s decision on whether to exit; i.e. it com-
pares its continuation value to the cost of entry. Since the competitors of the potential
entrant are given by the entire vector of active firms’ states, or ω, the value of potential
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entrants i is given by

(8)V e
(
ω, φe

) = max

{
0, max

xe
i

−φe − xe
i + β

∑
ν

We(ν | ω)p
(
ν | xe

i

)}
,

where We(·) is defined analogously to W(·) for an incumbent firm.
The potential entrant solves for its optimal investment xe(ω) in a manner analogous

to an incumbent firm, and then enters if and only if it is profitable to do so. Letting
χe(ω, φe) be the indicator which takes the value of one if the potential entrant enters
and zero otherwise

(9)χe
(
ω, φe

) = arg max
χ∈{0,1}

χ

(
−φe − xe(ω) + β

∑
ν

We(ν | ω)p
(
ν | xe(ω)

))
.

So the probability that a potential entrant enters is

(10)re(ω) = Fe

(
−xe(ω) + β

∑
ν

We(ν | ω)p
(
ν | xe(ω)

))
.

3. Equilibrium

This section begins by providing a definition of equilibrium. We then provide sufficient
conditions for the existence of an equilibrium that satisfy these definitions (Section 3.1).
We do not know conditions which insure uniqueness of the equilibrium but we do have
results which characterize any of the possible equilibria (Section 3.2), and we use those
characteristics in our computational algorithms. To illustrate the issues underlying the
multiplicity of equilibria, we consider a number of examples of multiple equilibria (Sec-
tion 3.3). Our discussion is mostly based on EP, Doraszelski and Satterthwaite (2003),
and Besanko et al. (2004).

We consider Markov perfect equilibria (MPE). A Markov prefect equilibrium insures
that at each ω ∈ S◦ each incumbent firm and each potential entrant:

• chooses optimal policies given its perceptions on likely future industry structures,
and

• those perceptions are consistent with the behavior of each agent’s competitors.
One way of checking that these conditions are satisfied is to show that the equilibrium
generates a set of value functions and policies, one for each potential entrant and each
incumbent at each ω ∈ S◦, such that:

• given the policies, the value functions satisfies the Bellman equations in (2) and
(8) for incumbents and potential entrants respectively, and

• given the value functions, the policies for investment and exit satisfy the optimality
conditions in Equations (4) and (6) for incumbents (augmented to include a check
of whether the extreme point for investment is a global maximum in cases where
functional forms do not guarantee that), and the analogous equations for potential
entrants.
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Note that since the horizon is infinite and the influence of past play is captured in
the current state, there is a one-to-one correspondence between subgames and states.
Hence, any Markov perfect equilibrium is subgame perfect. Further since a best reply
to Markovian strategies is a Markovian strategy, a Markov perfect equilibrium remains
a subgame perfect equilibrium even if more general strategies are considered.

3.1. Existence

The extent to which the applied literature has faced the existence question is by testing
whether the values and policies they computed in fact satisfy the equilibrium conditions
up to some error. The fact that we allow for an error, makes this condition imperfect.10

However since computers can only compute fixed points to machine precision, there
is a sense in which we cannot determine whether numerical results satisfy any stronger
notion of equilibrium than this. Indeed the reader that is only interested in computational
issues should be able to skip this section and have no trouble with the rest of the paper.

This section asks a different question then that asked by the applied literature. In
particular we ask for conditions that insure that there is an equilibrium in which the
conditions given above hold exactly. The importance of an existence proof to applied
work is that it provides conditions that ensure we are searching for an approximation to
something that actually exists. The weakness is that the conditions we give for existence
are sufficient but not necessary, so there may well be equilibria in situations which do
not abide by the conditions in the proof.

We look for an equilibrium in pure strategies (computing mixed strategy equilibria
increases the computational complexity of the algorithm markedly). The proof of ex-
istence requires a continuous mapping from policies into themselves. One reason for
adding random scrap values/setup costs to the EP framework is that they allow us to
treat the continuous exit and entry probabilities as the policies [in contrast to the dis-
crete entry and exit decisions; see Doraszelski and Satterthwaite (2003)]. Continuity of
this best-reply mapping can then be established under standard continuity assumptions
on the transition functions.

Given continuity, one way to obtain a pure strategy equilibrium is to ensure that a
firm’s best reply is always unique.11 As long as the densities of the scrap values and

10 The theoretical literature on game theory does use the notion of ε-equilibrium, but it is not automatically
satisfied by ensuring the equilibrium conditions up to a sufficiently small error; i.e. in an ε-equilibrium a
player’s strategy brings the player within ε of his best possible payoff, assuming that payoffs can be com-
puted exactly. In the notion used in computation both payoffs and strategies are computed with error, and the
connection between the computed strategies and an ε-equilibria has not been shown. In addition it is well
known that an ε-equilibrium need not be close to an exact equilibrium.
11 Escobar (2006) proposes a similar condition to ensure the existence of an equilibrium in pure strategies
in the context of more general dynamic stochastic games with a countable state space and a continuum of
actions. While Escobar’s (2006) condition applies to games with continuous actions other than the investment
decisions in the EP model, there is no systematic treatment of incomplete information as a means to purify
the discrete entry/exit decisions.
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setup costs are continuous the entry and exit best responses are unique [up to a set
of measure zero which is sufficient for the argument in Doraszelski and Satterthwaite
(2003)]. Turning to investment decisions, any family of distribution functions (our Pν)
which guarantee that, for any given distribution of the outcomes from the actions of
the firm’s competitors, the continuation value for the firm is concave in its investment
choice will guarantee a unique best reply. This is true of the simple family used above
(which is taken from EP). Doraszelski and Satterthwaite (2003) go further. They define a
class of transition functions that are called unique investment choice (UIC) admissible
and prove that if the transition function is UIC admissible, then a firm’s investment
decision is indeed uniquely determined. The UIC class generalizes the EP example by
allowing transitions to more than immediately adjacent states, and also allows for the
construction of median preserving spreads.

3.2. Characterization

EP provide conditions which insure that in equilibrium there is an n̄ and a ω̄ such that
if we start at an initial industry structure in which

• there are no more than n̄ firms active, and
• each active firm has an ωi ∈ Ω ,

then, with probability one,
• there will never be more than n̄ firms active, and
• we will never observe an active firm with an ωi /∈ Ω .

As a result #S◦ is finite, and equilibrium values and policies are computable.12

They also show that any equilibrium defines a time homogeneous Markov process,
for ω′ given ω, defined by the family of distributions (or by the Markov transition kernel)

Qω′ ≡ {
Q(· | ω): ω ∈ S◦}.

Moreover every process generated by the equilibrium conditions satisfies a fixed point
to an operator which takes the set of time homogeneous Markov processes on S◦ into

12 The proof restricts the profit function so that profits will be driven arbitrarily close to zero for n large
enough regardless of the location of the incumbents, and that profits are bounded from above. It also assumes
that the number of potential entrants in any given period is finite, that entry fees are bounded away from zero,
and that if there is no investment, the firm’s state cannot advance (i.e., Pr(ν = 1 | xi = 0) = 0). The argument
for the upper bound to ω is roughly as follows. The value function is bounded if profits are. The incentive to
invest is the increment to the value function from increasing ωi . Since the value function is bounded, for any
given value of ω−i that increment can be made arbitrarily close to zero. So eventually the increment has a
value less than the cost of investment and investment shuts down. Once investment shuts down the firm’s state
cannot increase. The argument is completed by showing that their is only a finite number of possible ω−i .
The argument for the upper bound to n follows from the fact that profits can be driven arbitrarily small by
increasing n, that there are finite number of potential entrants in each period, and that entry costs are bounded
away from zero.
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itself, and one can view the procedures for computing the equilibria that we discuss
below as algorithms for finding such a fixed point.13

Since #S◦ is finite, the process generating industry structures in the EP model is a
finite state Markov chain. Consequently standard results in Markov chain theory [see,
e.g., Freedman (1983)] insure that there is at least one recurrent class of states, say
R ⊂ S◦, and with probability one each sample path (each sequence of {ωt }t ) will enter
one of these recurrent classes in finite time. Once in the recurrent class the sample path
will stay within it forever. Consequently the points in the recurrent class are visited
infinitely often. EP go further and provide conditions which insure that there is only
one such class, so the process is ergodic, though ergodicity is not necessary for the
discussion that follows and it does require substantive conditions [for an example with
more than one recurrent class see Besanko and Doraszelski (2004)].

In IO problems recurrent classes of points are typically much smaller then the state
space or S◦. Consider our quality competition example. As we increase market size
(our M) we will typically generate equilibria with a higher n̄, and #S◦ will increase
polynomially in n̄. However as M increases the economics of the primitives will typi-
cally insure that, provided we start with a relatively large n at high enough states, we will
never observe an industry structure with a small number of firms at low states, as entry
will occur whenever the number and states of incumbents fall below certain thresholds.
Thus #R can grow at a much slower rate that #S◦. Indeed, at least in principle it need
not grow in M at all [in our quality model it seems to grow less than linearly in M , see
the example in Pakes and McGuire (2001)]. Similarly if we allow two characteristics
of products, say mpg and engine size of vehicles, then in equilibrium we may never
observe vehicles with either both mpg and engine size very large (as it would be too
expensive to produce) or both engines and mpg very small (as no one would buy them).

Recall that all subgames initiated from the recurrent class will stay within that class
forever. So if we were trying to analyze likely future outcomes in an industry and are
willing to assume that (or could check whether) the current industry structure were in
the recurrent class, then all we would require is information on policies on the recurrent
class. Therefore a way to reduce the computational burden in applied problems is to
design an algorithm which computes values and policies only on the recurrent class
[see Pakes and McGuire (2001)].

Before leaving this section we want to emphasize that the nature of states in R, the
transitions among those states, and the transitions into R all depend on the primitives of
the problem and can vary greatly with different parameterizations for those primitives.
As a result there is little in the way of characterizations of behavior that are directly

13 To see this assume Qω′ is generated by our equilibrium conditions. Take any ω and use Q(· | ω) ∈ Qω′ to
form the marginal distribution of the likely locations of each firm’s competitors in the next period. Substitute
this for {q(·)} in constructing the expected discounted value of future net cash flow conditional on investment
outcomes, or the {W(·)}, in Equation (3). Then form optimal policies for all agents just as described above.
In equilibrium these policies will generate an objective distribution of outcomes which coincide with the
Q(· | ω) ∈ Qω′ we started with.
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relevant for policy or descriptive work that comes out of the general framework. Rather
the goal is to have a framework which is flexible enough to generate a broad range of
results and then let knowledge of the relevant institutions pick out the implications that
seem relevant for the problems at hand.

3.3. Multiplicity

Doraszelski and Satterthwaite (2003) provide three examples that show that there need
not be a unique equilibrium that is symmetric and anonymous. Multiplicity may arise
from three sources:

• investment decisions,
• entry/exit decisions, and
• product market competition.

We now discuss each of these in turn, providing simple examples of the first two. Note
that both the examples only consider equilibria that are symmetric and anonymous in
the sense we defined earlier. Note also that the examples are all in the context of simple
models where we can break out the static profit function and analyze it without consid-
ering investment, entry and exit decisions. Once this simplification is left behind, much
richer examples of multiple equilibria can be generated, see Besanko et al. (2004).

Investment decisions Consider a model with n̄ = 2 firms and neither entry nor exit.
Firm i’s capacity in state ωi ∈ {1, 2, . . . , 10} is 5(ωi − 1). The state-to-state transi-
tions are as in our example with a firm-specific depreciation shock with parameters
α = 2.375 and δ = 0.03. The discount factor is β = 20

21 . Products are undifferentiated
and firms compete in prices subject to capacity constraints. There are M = 40 identi-
cal consumers with unit demand and reservation price v = 1. The equilibrium of this
Bertrand–Edgeworth product market game is unique and symmetric [see Chapter 2 of
Ghemawat (1997)].

Figure 30.1 depicts two symmetric equilibria of the dynamic stochastic game. In
both equilibria investment activity is greatest in states on or near the diagonal of the
state space. That is, firms with equal or similar capacities are engaged in a “race” to
become the industry leader. The difference in investment activity is greatest in state
(5, 5) where both firms invest 1.90 in the first equilibrium compared to 1.03 in the
second one. Investment activity also differs considerably in states (1, 6) and (6, 1): in
the first (second) equilibrium the smaller firm invests 2.24 (3.92) and the larger firm
invests 1.57 (1.46). That is, in the second equilibrium, a firm that has fallen behind to
state 1 strives to catch up and the industry leader (i.e., the firm in state 6) to some extent
accommodates the laggard by reducing its investment.

Note that multiplicity rests on the dynamic nature of the game. Because product mar-
ket competition takes place before investment decisions are carried out, a firm has no
incentive to invest if β = 0. Hence, multiple equilibria cannot possibly arise in the static
version of the game.
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Figure 30.1. Two equilibria. Source: Doraszelski and Satterthwaite (2003).

Table 30.1
Two more equilibria

r(ω1, ω2) ω2 = 1 ω2 = 2 r(ω1, ω2) ω2 = 1 ω2 = 2
ω1 = 1 0.8549 0.8549 ω1 = 1 0.8549 0.1542
ω1 = 2 0.8549 0.8549 ω1 = 2 1 0.8549

Source: Doraszelski and Satterthwaite (2003).

Entry/exit decisions Consider a model with at most n̄ = 2 firms, ω̄ = 2 active states
plus one inactive state per firm, and the profits from product market competition given
by

π(ω1) = 1, π(ω1, ω2) = 0.

That is, monopoly profits are one and duopoly profits are zero. While entry is prohib-
ited, exit is permissible with a scrap value that is uniformly distributed on [14, 16]. The
discount factor is again β = 20

21 . Finally, a firm cannot transit between its active states
(in our example with a firm-specific depreciation shock this corresponds to α = 0 and
δ = 0). Notice that the parameters are chosen such that each firm would want to exit if
its rival stays, i.e., exiting is more attractive than being a duopolist, but each firm would
want to stay if its rival exits, i.e., being a monopolist is more attractive than exiting. This
gives rise to a “war of attrition”.

One equilibrium has both firms play the same strategies in states (1, 1), (1, 2), (2, 1),
and (2, 2). The left panel of Table 30.1 summarize this equilibrium. Another equilibrium
is illustrated in the right panels of Table 30.1. In states (1, 1) and (2, 2) both firms
make the same exit decisions as before. In state (1, 2), however, firm 1 exits with high
probability and firm 2 stays for sure whereas in state (2, 1) firm 1 stays for sure and
firm 2 exits with high probability. Note that the two equilibria differ starkly from each
other: In the first equilibrium, a duopolistic industry may over time turn into either a
monopolistic or an empty industry. In the second equilibrium, if the industry starts in
states (1, 2) or (2, 1), then it always ends up as a monopoly.

Product market competition To determine the profit function we need to model com-
petition in the product market. Depending on the nature of demand and cost primitives,
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and the assumptions on strategies, it is well known that we can generate multiple solu-
tions to this static game. The different profit functions will generate different investment,
entry, and exit incentives and hence different equilibria with different distributions of
sample paths for industry structures. This is yet another source of multiplicity.

We conclude with some further details on how multiplicity arises. The value of con-
tinued play to firm i is determined by its value function in states ω′ that may be reached
from state ω. Holding the value of continued play fixed, the strategic situation in state ω

is akin to a static game. If the reaction functions in this game intersect more than once,
then multiple equilibria arise.

We say that the model satisfies stagewise uniqueness if the reactions functions inter-
sect once irrespective of the value of continued play [Besanko et al. (2004)], i.e., there
is only one set of Nash equilibrium policies conditional on the value of continued play.
Note that stagewise uniqueness requires more than just UIC admissibility. In our invest-
ment example above, the transition function satisfies UIC admissibility, so that given a
firm’s beliefs about the value of continued play, its investment decision is uniquely de-
termined. The mere fact that each firm has a well-defined reaction function (as opposed
to a correspondence) does not guarantee that these functions intersect only once.

If the model satisfies stagewise uniqueness and there are multiple equilibria, the mul-
tiplicity must arise from firms’ expectations regarding the value of continued play. That
is rational expectations are consistent with more than one value of continued play at a
least one node of the game tree.

As Besanko et al. (2004) point out, a sufficient condition for uniqueness of equilib-
rium in a dynamic stochastic game is that the model satisfies stagewise uniqueness and
that movements through the state space are unidirectional, i.e., a firm’s state can only
move in one direction (either up or down). Stagewise uniqueness precludes players’ de-
cisions from giving rise to multiple equilibria, and unidirectional movements preclude
their expectations from doing so. Though applied problems with this property are rare,
it is instructive to consider the reasoning behind this argument.

To do so let there be n̄ = 2 firms and neither entry nor exit. Suppose that a firm
can never move backward to a lower state (say because δ = 0 rules out depreciation
shocks). Hence, once the industry reaches state (ω̄, ω̄), it remains there forever, so that
the value of future play in state (ω̄, ω̄) coincides with the value of being in this state.
In conjunction with stagewise uniqueness, this uniquely determines the value of being
in state (ω̄, ω̄). Next consider states (ω̄ − 1, ω̄) and (ω̄, ω̄ − 1). The value of future
play in states (ω̄ − 1, ω̄) and (ω̄, ω̄ − 1) depends on the value of being in state (ω̄, ω̄).
Stagewise uniqueness ensures that firms’ decisions in states (ω̄ − 1, ω̄) and (ω̄, ω̄ − 1)

as well as the value of being in these states are uniquely determined. Further, since the
value of future play in state (ω̄ − 1, ω̄ − 1) depends on the value of being in states
(ω̄−1, ω̄) and (ω̄, ω̄−1), firms’ decisions and the value of being in state (ω̄−1, ω̄−1)

are uniquely determined. Continuing to work backwards in this fashion establishes that
the equilibrium is unique. Conversely, suppose a firm can never move forward to a
higher state (say because α = 0 renders investment completely ineffective). A similar



1908 U. Doraszelski and A. Pakes

argument establishes uniqueness of equilibrium except that the argument is anchored in
state (1, 1) rather than state (ω̄, ω̄).14

4. Introduction to computation

There have been a number of different algorithms proposed for computing equilibria
to these games. One possibility is to look at the problem of computing equilibria as
the problem of solving the system of non-linear equations defined by our equilibrium
conditions [see Chapter 5 of Judd (1998) for methods for solving non-linear equations
systems]. However the applied problems we are interested in are typically too large to
make direct application of Newton’s method practical. Most applications therefore use
some type of Gaussian method that break up the system of non-linear equations into
smaller parts. The idea behind Gaussian methods is that it is harder to solve a large
system of equations once than to solve smaller systems many times.

The Gaussian method we begin with is the backward solution method used in Pakes
and McGuire (1994). This section begins by describing their algorithm, and concludes
with a general discussion of two problems that can make it necessary to use more so-
phisticated algorithms in applied work. The first is the burden of computing equilibria,
the second is the possibility of multiple equilibria. The later sections provide tools that
ameliorate these two problems. First we discuss a number of computational methods
that alleviate the computational burden. Among others we explain the continuous-time
stochastic games due to Doraszelski and Judd (2004) and the stochastic approximation
algorithm due to Pakes and McGuire (2001). Then we explain the homotopy methods
used in Besanko et al. (2004) to address the multiplicity problem. We note however that
neither problem is currently “solved”, i.e., both computational burden and multiplicity
can effectively limit the extent to which we can analyze particular applied problems.

4.1. Gaussian methods

Like all backward solution techniques the Pakes and McGuire (1994) algorithm is an
iterative procedure which starts each iteration with a set of numbers in memory, provides
a rule which updates those numbers in the course of the iteration, and checks to see if
the updated numbers satisfy a convergence criterion at the end of the iteration. If not the
algorithm begins a new iteration.

The algorithm holds in memory an expected value function and policy for each in-
cumbent firm and each potential entrant in each state ω ∈ S◦. The expected value
function is defined as

(11)V (ωi, ω−i ) ≡
∫

φ

V (ωi, ω−i , φ) dF(φ).

14 As an aside we note unidirectional movements through the state space not only make a dynamic stochastic
game much more tractable [see, e.g., Cabral and Riordan (1994)] but also greatly simplify computing an
equilibrium [see, e.g., Judd, Schmedders and Yeltekin (2002)].
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By keeping these expected values, instead of the values themselves in memory, we can
ignore the continuous state variable φ in storing and recalling objects from memory.

From the definition of the Bellman equation in (2) and of the W(·) in Equation (3)
we have

V (ωi, ω−i ) = π(ωi, ω−i ) + (
1 − r(ωi, ω−i )

)
φ(ωi, ω−i )

(12)

+ r(ωi, ω−i )

{
− x(ωi, ω−i ) + β

∑
ν

W(ν | ωi, ω−i )p(ν | xi)

}
,

where

(13)W(ν | ωi, ω−i ) ≡
∑
ω′−i ,η

V (ωi + ν − η, ω′−i )q(ω′−i | ωi, ω−i , η)p(η),

and φ(ωi, ω−i ) is the expectation of φ conditional on exiting in state (ωi, ω−i ) (i.e. on
χ(ωi, ω−i , φ) = 0).

An iteration circles through the states in some fixed order, updating all policies and
expected values associated with each state every time it visits the state (any algorithm
which updates all points at each iteration is a “synchronous” algorithm, we come back
to this below).

Iterations Iterative techniques begin with an initial set of values and policies for all
states in S◦. There are a number of alternative ways to obtain the initial guesses. If no
other information is available, reasonable initial guesses are often obtained by assuming
the agent gets the profits from its state forever, and discounting that sum. That is, if we
let the superscript 0 to denote guesses, then

V 0(ωi, ω−i ) = π(ωi, ω−i )

1 − β
, r0(ωi, ω−i ) = 1, x0(ωi, ω−i ) = 0,

V e,0(ω) = re,0(ω) = xe,0(ω) = 0.

Of course if there is some information available that allows one to form initial conditions
which are likely to be closer to the true values than this, e.g., if one has available the
equilibrium values from a set of parameters that are close to the set that underlies the
current calculation, one would use them.

Iteration l determines V l(·), xl(·), rl(·) V e,l(·), xe,l(·), re,l(·) from V l−1(·), xl−1(·),
rl−1(·), V e,l−1(·), xe,l−1(·), re,l−1(·). We now provide detail on how the values and
policies are updated from one iteration to the next.

Updating policies and values Fix ω. For each incumbent and potential entrant we
update the W(·)’s by treating the continuation values in memory as the true expected
values of being in a given state in the next period, and the policies in memory as the
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true policies of the firm’s competitors. We then mimic the single agent problem dis-
cussed above for computing updated values and policies conditional on these {W(·)}
(or {We(·)}).

If we let l index iterations, the first step is constructing the {Wl(·)} from the policies
and expected values in memory at iteration l − 1. The calculation is simplified if we
begin by constructing the probabilities of a firm’s future state, counting exit as a possible
outcome, conditional on the current states, the policies in memory and the outside shock.
Recall that a firm either exits (to state ∅) or continues with state (ω + ν − η), so if we
use the probabilities for ν given x in Equation (1)

pl−1(ω′
i | ωi, ω−i , η) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − rl−1(ωi, ω−i ) if ω′
i = ∅,

rl−1(ωi, ω−i )p(νi | xl−1(ωi, ω−i ))

if ω′
i = ωi + 1 − η,

rl−1(ωi, ω−i )(1 − p(νi | xl−1(ωi, ω−i )))

if ω′
i = ωi − η.

Assuming that there is a fixed number, say E , of potential entrants each period, we will
also need the binomial probability that precisely E ′ of the E potential entrants enter
conditional on iteration l − 1’s policies which is constructed as

re,l−1(E ′, ω) ≡
(E
E ′

)
re,l−1(ω)E

′[
1 − re,l−1(ω)

]E−E ′
.

Next take the pl−1(·)’s and the re,l−1(·)’s and compute the firm’s perceived probabilities
of next periods values of its competitors state as

ql(ω′−i | ωi, ω−i , η)

=
∏
j �=i

pl−1(ω′
j | ωj , ω−j , η)

E ′∏
j=1

p
(
ν′
j | xe,l−1(ω)

)
re,l−1(E ′, ω),

where p(νj | ·) is as defined in Equation (1), and xe,l−1(·) is the entry policy at iteration
l − 1.

Substituting ql(·) into Equation (13) and calling up expected values from memory
we compute

Wl(ν | ωi, ω−i ) ≡
∑
ω′−i ,η

V l−1(ωi + ν − η, ω′−i )q
l(ω′−i | ωi, ω−i , η)p(η).

We now update continuation values and policies conditional on the {Wl(·)} for a
given ω. For each incumbent i we solve the resultant single agent optimization problem
for the optimal investment and exit decisions as follows

• Substitute Wl(·) for the generic W(·) in the Kuhn–Tucker condition (4) to obtain
the optimal investment of the firm should it continue. In the simple case where ν

only takes on the values {0, 1}, the optimal x satisfies
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x

(
−1 + β

[
Wl(1; ωi, ω−i )− Wl(0; ωi, ω−i )

]∂p(1 | x)

∂x

)
= 0 ∧ x � 0.

Depending on the chosen functional forms for the transition probabilities, the so-
lution to this problem, which we label xl(ωi, ω−i ), may or may not have a closed-
form solution. Equation (5) exhibits the solution in case the success probability
p(1 | x) = αx

1+αx
. The second-order condition is satisfied automatically here, but

is has to be explicitly checked if more general functional forms are used.
• Substitute xl(ωi, ω−i ), Wl−1(ν; ωi, ω−i ) into Equation (6) to determine the exit

policy, i.e. χl(ωi, ω−i , φ), and use that policy to determine the probability that
incumbent firm i will draw a φ that induces it to remain in the industry as

rl(ωi, ω−i ) = F

(
−xl(ωi, ω−i ) + β

∑
ν

W l(ν; ωi, ω−i )p
(
ν | xl(ωi, ω−i )

))
.

• Substitute Wl(ν; ωi, ω−i ), xl(ωi, ω−i ), and rl(ωi, ω−i ) into (12) and take the
value of the resultant expression as the continuation value V l(ωi, ω−i ). Place
V l(·), xl(·), rl(·) in memory. This completes the update for the incumbent firms
at ω.

Updating values and policies for potential entrants, i.e., V e,l(ω), xe,l(ω), and re,l(ω),
is analogous except that we use We,l−1(ν | ω) to evaluate the expected discounted
value of future net cash flows for the potential entrants, and the entrant bases its entry
decision, and its investment should it enter, on the Bellman equation (8) instead of the
incumbent’s Bellman equation in (2). That completes our discussion of the updates that
occur during an iteration.

Stopping rule The algorithm cycles through the state space until the changes in the
values and policies from one iteration to the next are “small”.15 To quantify this, we
require a measure of the distance between two sets of values and policies. Different
distance measures or norms have been used in the literature, and as we shall see some
of them make more sense for one algorithm than for another. For the Gaussian scheme
described above, there is an argument for using the L∞ or sup norm, as it is the strongest

15 If one does not fix Ω and n̄ at the outset, but rather allows the algorithm to solve for them [as did Pakes
and McGuire (1994)], the sequence of iterations must typically be done more than once. For a fixed Ω we
compute the fixed point with the constraint that there are never more that n̄ firms active. Those values and
policies are then used as initial conditions for a sequence of iterations that allows for a larger number of active
firms. We repeat this procedure until n̄ is so large that there are no states at which a potential entrant wants to
enter. Ω is set as follows. First we compute values and policies for the monopoly problem. The value of ω at
which a monopolist would exit and the value of ω at which the monopolist would stop investing become the
lowest and highest values in Ω . Though a value of ω at which the monopolist would exit would induce exit
no matter the market structure, it is possible for an oligopolist to still invest at an ω at which a monopolist
would not. Thus once one computes the equilibrium values one must check to see that no firm wants to invest
at ω̄. If this is not the case ω̄ is increased, and the computation is done again. For more detail see Pakes and
McGuire (1994).
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norm, and to use a norm which is close to “unit free”, so we divide by |V l(ω)|. Therefore
we take the relative difference in values at iteration l to be∥∥∥∥V l − V l−1

1 + |V l |
∥∥∥∥ = max

ω∈S◦

∣∣∣∣V l(ω) − V l−1(ω)

1 + |V l(ω)|
∣∣∣∣,

where the plus one is to avoid division by zero, and similarly for policies.16

There remains the issue of when to terminate the iterations. We would like a criterion
that is based on the distance between the current iteration’s policies and values and the
true fixed point, and not just on the distance between subsequent iterates. Note that if
the algorithm does converge (and there is no guarantee that it will), then convergence is
linear as in all Gaussian schemes [Ortega and Rheinboldt (1970, p. 301)]. A sequence
{zl}∞l=0 is said to converge linearly to the limit z∞ if and only if

lim
l→∞

‖zl+1 − z∞‖
‖zl − z∞‖ � θ < 1.

Assume temporarily that the first inequality can be strengthened to hold along the entire
sequence of iterates, i.e.,

(14)
∥∥zl+1 − z∞∥∥ � θ

∥∥zl − z∞∥∥
for all l. This is similar to the contraction property of a single agent dynamic program-
ming problem. Then the distance to the limit can be shown to be related to the distance
between subsequent iterates by∥∥zl − z∞∥∥ � ‖zl+1 − zl‖

1 − θ
.

Consequently to ensure that the current iterate is within a prespecified tolerance ε of the
limit, we can stop once

(15)
∥∥zl+1 − zl

∥∥ � ε(1 − θ).

Of course the algorithm described above is not a contraction mapping and the con-
dition in Equation (14) does not, in general, hold along the entire sequence of iterates.
On the other hand, if the algorithm converges, our experience is that it does hold af-
ter a “burn in” phase of several iterations. Figure 30.2 illustrates this point; it plots the
relative difference in values and policies between iterations (on a log scale) versus the
number of iterations. After iteration 50 or so, the distance decreases as a straight line
until it hits machine precision around iteration 325. Unlike a single agent dynamic pro-
gramming problem, however, we do not have an obvious guess for the convergence

16 Note that in a single agent dynamic programming problem we would define a norm on absolute differences
(instead of relative differences) and then derive error bounds from the contraction mapping theorem. Seeing
that our problem is not a contraction we cannot derive error bounds in this way, and the argument for using
relative differences is that at least it makes the distance measure, and the tolerance we will eventually use,
scale invariant.
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Figure 30.2. Relative difference in values and policies between iterations. Source: Doraszelski and Judd
(2004) and own calculations.

factor. One way to resolve this problem is to estimate θ from the iteration history.
There are many ways of doing this. For example, the slope of the straight line in Fig-
ure 30.2 is a direct estimate of log10 θ because if the current and previous errors are
related by ‖zl+1 − zl‖ = θ‖zl − zl−1‖, then the current and initial errors are related by
‖zl+1 − zl‖ = θ l‖z1 − z0‖ and hence log10 ‖zl+1 − zl‖ = l log10 θ + log10 ‖z1 − z0‖.
Alternatively, suppose we want to continue iterating until we are with ε of the limit.
Then we could let k be the first iteration such that ‖zk − zk−1‖ < 10ε and l the first
iteration such that ‖zl − zl−1‖ < ε to produce the estimate

θ̂ =
( ‖zl − zl−1‖

‖zk − zk−1‖
) 1

l−k ≈ 10
1

k−l .

For further discussion see Judd (1998, pp. 42–44) and Doraszelski and Judd (2004).

Gauss–Jacobi vs. Gauss–Seidel Pakes and McGuire (1994) describe a Gauss–Jacobi
scheme. That is when we compute the lth iteration values and policies we only use
the information in memory from the (l − 1)st iteration. An alternative is to use a
so-called Gauss–Seidel scheme [used, e.g., in Benkard (2004), Doraszelski and Judd
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(2004)]. Consider the lth iteration. When we are at state ω we know the new guesses
V l(ω

†
i , ω

†
−i ), r

l(ω
†
i , ω

†
−i ), x

l(ω
†
i , ω

†
−i ), V

e,l(ω
†
i , ω

†
−i ), r

e,l(ω
†
i , ω

†
−i ), and xe,l(ω

†
i , ω

†
−i )

in states ω† that are updated prior to state ω in each iteration. This information can be
used when updating the values and policies at state ω requires values and policies from
state ω†.

In systems of linear equations it can be shown that if both Gauss–Jacobi and Gauss–
Seidel schemes converge, then Gauss–Seidel schemes are faster [see, e.g., Section 2.6.2
in Bertsekas and Tsitsiklis (1997)]. There is some experience suggesting that this is also
true in the systems of non-linear equations that characterize the equilibria of dynamic
stochastic games.

Convergence We note that there is no proof that either of these algorithms converge.
Moreover when a Gauss–Jacobi scheme converges, a Gauss–Seidel scheme may not,
and vice versa. Again there is some experience that suggests that Gauss–Seidel schemes
are more prone to convergence failures. Pakes and McGuire (1994) discuss a number of
problems and fixes. In particular, it is frequently helpful to introduce dampening into the
algorithm. In the lth iteration after computing V l(·), xl(·), rl(·), V e,l(·), xe,l(·), re,l(·)
dampening forms a convex combination of the new and the old guesses and uses these
as input for the (l + 1)th iteration. This may facilitate convergence by “smoothing out”
the path that the algorithm takes; see Pakes and McGuire (1994, footnote 18) and Judd
(1998, ch. 3) for details.

Software Pakes, Gowrisankaran and McGuire (1993) make Gauss and Matlab code
publicly accessible. The code allows for three types of product market competition.
One is a differentiated product model. Here equilibrium in the “spot” market is Nash in
prices, and firms invest to improve the qualities of their products. The other two models
are homogeneous product models; one has differences in marginal costs across firms and
the other has differences in capacities. In these models equilibrium in the spot market is
Nash in quantities and investment is directed at decreasing marginal cost (in the model
with differences in marginal costs) or at increasing capacity (in the model with capacity
constraints). For each model the user is allowed to specify values for parameters that set
demand, production costs, sunk entry and exit fees, the efficacy of investments, and the
discount rate. In addition the user specifies an initial market structure for the analysis.
Finally there are additional modules which compute the solutions to a social planner’s
problem and to a “perfect cartel” problem based on the same parameters, and provide
statistics which allow the user to compare these outcomes to those from equilibrium of
the dynamic stochastic game. The publicly accessible code has been used extensively
as a teaching tool, but it is not designed for computational efficiency and flexibility. For
this reason researchers using variants of the EP framework have largely developed their
own programs.
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Doraszelski and Judd (2004) make a set of C codes with Matlab interface available
upon request.

4.2. Computational burden

The computational burden of computing equilibria is large enough to often limit the type
of applied problems that can be analyzed. There are two aspects of the computation that
can limit the complexity of the models we analyze; the computer memory required to
store the value and policies, and the CPU time required to compute the equilibrium.
Here we assume that CPU time is the binding constraint, and analyze its properties.

The compute time is determined by three factors:
• the number of states per iteration,
• the time per state required to update values and policies, and
• the number of iterations.

Together the first two factors determine the time per iteration. The time to convergence
is then given by the product of the time per iteration and the number of iterations. We
examine the three factors in turn.

Number of states It is convenient to consider the number of states as a function of
the maximum number of firms ever active, our n̄, and of the number of possible values
the firm-specific state variable can take on, say #Ω .17 Recall that provided we restrict
attention to symmetric and anonymous equilibria the number of states grows polynomi-
ally in both n̄ and in #Ω . Even though there is no curse of dimensionality in the formal
sense, the polynomial growth is often a challenge. Moreover, without special structure,
#Ω grows exponentially in the number of state variables that take on firm specific val-
ues. Suppose, for example, we want to model firms that differ in terms of both product
quality and production capacity. If quality and capacity each take on one of ω̄ values,
then #Ω = ω̄2. Thus allowing for multiple sources of heterogeneity among firms can
be especially costly. A similar problem arises if firms market more than one product,
see Langohr (2003) and Song (2002).

Time per state This consists of computing the summation underlying the expected
discounted value of future net cash flow given an investment outcome, or the relevant
elements of {W(·)}, and then solving for optimal policies and the probabilities of entry
and exit given {W(·)}. As noted for simple enough functional forms the optimal in-
vestment can be written down as an analytic function of the {W(·)}, and provided the
distributions of entry and exit fees can be evaluated analytically, so can the entry and
exit probabilities.

However, as Pakes and McGuire (2001) point out, if we compute transition proba-
bilities as we usually do using unordered states then the number of states that we need

17 We note that in fact n̄ and #Ω are endogenous, but the map from primitives is too complex to be useful,
and for many applied problems there is a priori information available on likely values for n̄ and #Ω .



1916 U. Doraszelski and A. Pakes

to sum over to compute continuation values grows exponentially in both the number of
firms and the number of firm-specific state variables.18 To see this, suppose that each
firm can move to one of K states from one period to the next. For example if there were
two firm-specific state variables and each could move up by one, down by one, or stay
the same then K = 32 = 9. Then if there are n firms continuing from that state and E
potential entrants, the total number of states that need to be summed over to obtain the
continuation values for a given firm is Kn+E−1.

Number of iterations There is little known about what determines the number of itera-
tions and how it scales in the size of the problem. Somewhat surprisingly our experience
has been that the number of iterations grows slowly if at all in #S◦ but can vary greatly
with the nature of the problem. Also the number of iterations does tend to increase with
the discount factor β, and by quite a bit when β approaches one [Doraszelski and Judd
(2004)].

Memory requirements Some of the more advanced algorithms to be discussed below
have, at least in some applications, been able to decrease CPU time to such an extent
that memory requirements typically become the binding constraint. This is a relatively
recent phenomena and except for Pakes and McGuire (2001) very little attempt has been
made to reduce memory requirements. This is an area which requires further attention.

Summary It should be clear from the discussion above that the burden of computing
equilibria can often be a significant consideration in choosing the model we analyze.
Indeed we typically can add enough sources of heterogeneity to any applied problem to
make it impossible to compute the required equilibrium.19 Moreover this same caveat
will apply to the more sophisticated algorithms introduced below. On the other hand,
all applied work can ever hope to accomplish is to form an approximation to the work-
ings of real industries that is adequate for the problem being analyzed. What the more
sophisticated algorithms allow us to do is weaken the dominance of computational con-
siderations in considering the relevant tradeoffs.

4.3. Equilibrium selection

As we pointed out in Section 3.3, we generally have little reason to believe that there
is a unique symmetric and anonymous equilibrium. This raises a number of issues for

18 The alternative, that is distinguishing among the elements in the smaller set S◦ instead of S, which as we
noted is not typically efficient for the kind of problems analyzed to date, would imply that the sum grows
exponentially in the number of state variables per firm and geometrically in the number of firms.
19 This also raises the question of what firms actually do and how close an approximation to actual behavior
the Markov perfect framework provides. This is a topic which is largely beyond the scope of this paper, though
it is touched on in Pakes and McGuire (2001). Our informal analysis indicates that perhaps the most frequent
surprise in empirical work is just how good an approximation the Markov perfect framework gives [see, e.g.,
Benkard (2004)].
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applied work. Some of them are not directly related to computation. Examples include
the estimation of parameters in the presence of multiple equilibria, the ability of data to
identify the equilibria (or the equilibrium selection rule) that is being played, and the
issue of how to evaluate the possible outcomes of alternative policies in the presence of
multiple equilibria [for more detail see, e.g., Pakes (2006) and the literature cited there].

Here we focus more narrowly on questions that involve the interaction between
computation and multiple equilibria, starting with the fact that any algorithm which
computes an equilibrium implicitly selects an equilibrium. Most applications have suf-
ficed with the selected equilibrium, perhaps after performing some rudimentary search
for alternatives.20

There is a sense in which any algorithm which converges is locally stable at least
with respect to the path along which it converged. On the other hand, Besanko et al.
(2004) prove, in the context of a dynamic model with learning-by-doing and organiza-
tional forgetting, that there is a set of equilibria that are unstable in the sense that they
cannot be computed by the Pakes and McGuire (1994) algorithm. An interesting and
unexplored question is whether there is something special about the equilibria an algo-
rithm selects. For example, would a learning algorithm either converge to it or at least
remain near it if started in an appropriate neighborhood? Perhaps even more important
is whether decision making processes used by actual firms would converge to it. If we
could characterize stability in these terms, then there would be grounds for excluding
the equilibria which are unstable as unlikely to occur.

There remains the question of the rationale for the selected equilibrium. There is a
sense in which the building blocks of the Pakes and McGuire (1994) algorithm are in-
tuitively appealing. The algorithm combines value function iteration as familiar from
dynamic programming with best reply dynamics (akin to Cournot adjustment) as fa-
miliar from static games. Since the ordering of the states does not affect iterates in a
Gauss–Jacobi algorithm, the Pakes and McGuire (1994) algorithm is independent of
the order in which states are visited. This means that different computers which use
the same parameter values and the same (admittedly arbitrary) initial conditions to the
Pakes and McGuire (1994) algorithm ought to obtain the same answer. Despite these
features of the Pakes and McGuire (1994) algorithm, however, it is not clear that the
equilibrium computed by it is the one we should focus on.

Undoubtedly the reasonableness of any selection depends on what the subsequent
analysis is to be used for. If we were trying to demonstrate the feasibility of a theoret-
ical proposition, or the feasibility of a particular change in outcomes as we vary some
parameter, then probably any of the equilibria would be fine. On the other hand, if we

20 Neither the Pakes and McGuire (1994) algorithm, nor the modifications that have been made to it to enable
it to be used for a broader range of applied problems, offers a systematic approach to computing multiple
equilibria. So to the extent that authors have searched for multiplicity, the search has been rather ad hoc,
usually consisting of computing equilibria many times from different initial conditions, or different orders for
cycling through the states in S◦.
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were trying to analyze how a particular industry is likely to respond to a proposed pol-
icy change, we need to be more careful. In this case, we would want to try to figure
out which of the possible equilibria is more likely, or at least to bound the outcomes
of interest that could arise. As noted above, the question of how to figure out which
equilibria are more likely to arise is beyond the scope of this paper. However the pos-
sibility of bounding outcomes raises distinct computational questions. In particular can
we compute all possible equilibria, or at least trace out a large subset of them? This is
the multiplicity issue we come back to below.

5. Alleviating the computational burden

The computational burden of computing equilibria is oftentimes substantial, thus limit-
ing the applications of the EP framework. In particular, there is a curse of dimensionality
in (i) computing expectations over successor states, and in (ii) the size of the state space.
This section outlines approaches to alleviating the computational burden. We begin with
an overview of the ideas behind the techniques and the differences between them. We
then proceed to a more detailed description of each of them, and we conclude with some
thoughts for future research. The subsections of this section correspond to the different
algorithms, and each should be readable independent of whether the others are read.

5.1. Overview

The first approach we describe, due to Doraszelski and Judd (2004), is designed to ease
the burden of computing the expectation over successor states, and hence decreases the
computation time needed to update values and policies at a particular state (it makes
no attempt to alleviate the burden imposed by the number of states). Doraszelski and
Judd (2004) set up a continuous-time model in which at any particular instant only one
firm experiences a change in its state. As a result if each firm’s transition can go to one
of K states, and there are n firms, we only need to sum over (K − 1) × n states to
compute continuation values. This is in contrast to the Kn possible future states that
we need to sum over in the computational algorithm described above.21 This implies
that the discrete- and continuous-time models discussed in this paper have different
implications. As a result it may (but need not) be the case that one of the models provides
a better approximation to behavior in a particular setting than the other. We come back

21 Note that if we are willing to explicitly restrict players to move one at a time we could obtain similar gains
from a discrete-time model in which decisions are made sequentially as a result of a random selection mech-
anism and outcomes are realized before the next decision is made. Discrete-time models with a deterministic
order of moves have been investigated in classic articles by Maskin and Tirole (1988a, 1988b); see also Noel
(2004) for a computable version of Maskin and Tirole (1988b) Edgeworth cycle model. From a computational
point of view the deterministic order prevents us from using anonymity to reduce the size of the state space.
It is the idea of using a random order of moves which preserves anonymity, see Doraszelski (2005).
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to this point in our discussion of topics for further research as one of those topics is the
role of timing assumptions in the models that have been used to date.

The second approach we describe for reducing the burden of computing equilibria
is the stochastic algorithm of Pakes and McGuire (2001). This algorithm is designed
to alleviate both the curse of dimensionality resulting from the need to calculate ex-
pectations over successor states at each point in the state space, and that arising from
the growth in the number of points in that state space. It use simulations draws both
to (i) approximate expectations, and to (ii) determine a recurrent class of points which
eventually become the only points at which it computes equilibrium policies.

Using simulation instead of explicit integration to compute expectations makes the
time per state linear in the number of firms (just as in the continuous-time model). The
stochastic algorithm, however, also deals with the large size of the state space. It up-
dates only one state at each iteration (the state visited at that iteration), and the same
simulation draws used to compute the expectation are used to update the state visited.
The algorithm eventually wanders into a recurrent class of points, and once in that class
stays within it. That is, after an initial run in period the algorithm only computes expec-
tations on this recurrent class of points, and, as noted, the cardinality of the recurrent
class can be much smaller than that of the state space itself. The relationship of the
cardinality of the recurrent class to that of the state space depends on the details of the
model. However as discussed below for IO models with even a reasonably large number
of state variables the cardinality of the recurrent class is often only a tiny fraction of that
of the state space.

From a conceptual point of view the Pakes and McGuire (2001) algorithm is an adap-
tation of artificial intelligence algorithms which have been used extensively for both
single agent problems and zero sum games [see Bertsekas and Tsitsiklis (1996)] to
the problem of computing the equilibrium of dynamic games. It is therefore related to
the recent theoretical literature on learning, both in macroeconomics [see, e.g., Sargent
(1993) and Lettau and Uhlig (1999)] and in games [see, e.g., Fudenberg and Levine
(1998)]. An additional rationale for the algorithm, then, is that the algorithm’s path has
an interpretation as an outcome of a learning process that might be a good approxima-
tion to behavior in certain situations.

We note that in both these subsections we provide numerical examples with compu-
tational time. The examples refer to models in which we increase the number of firms
holding the states per firm constant. As we increase the realism of our models we will
want to also consider how the computational complexity varies as we increase the num-
ber of state variables per firm. Unfortunately there has been very little experimentation
with models with more than one state variable per firm.

Finally we also briefly consider parametric approximation methods similar to those
discussed in Judd (1998), and approximations to the decision making process which
might be relevant when there are a large number of firms as in Weintraub, Benkard and
Van Roy (2005). The first set of methods are designed to reduce the number of points
which we have to update at each iteration of the iterative process, the second changes
the equilibrium concept in a way that simplifies computation.
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Many of the ideas behind the algorithms we describe are complementary. This sug-
gests building hybrids. For example one might want to combine the continuous-time
approach of Doraszelski and Judd (2004) with the idea of focusing on the recurrent
class due to Pakes and McGuire (2001). Alternatively the idea in Weintraub, Benkard
and Van Roy (2005) of changing the equilibrium conditions may be further exploited by
allowing for aggregate shocks and more detailed responses to a few “large” firms, still
keeping the idea of a “fringe” of small firms whose every move need not be considered
in computing future expectations.

5.2. Continuous-time models

Doraszelski and Judd (2004) develop continuous-time stochastic games with a finite
number of states. We consider a variant of their game which mimics the assumptions of
our discrete-time model as closely as possible.

The major difference is that in the discrete-time model the time path of the state is
a sequence while in the continuous-time model that path is a piecewise-constant, right-
continuous function of time. Jumps between states occur at random times according to a
controlled non-homogeneous Poisson process. Thus we need to specify the hazard rates
for each possible reason for a jump, and the probability of transitions conditional on the
jump occurring. In a model with industry specific shocks there are four possible reasons
for a jump; the investment of one of the incumbents produced a new outcome, the value
of the outside alternative increased, an incumbent decided to exit, or a potential entrant
decided to enter.

Setup The horizon is infinite and the state of the game at time t is ωt = (ω1t , . . . , ωnt ),
where ωit is the state of incumbent firm i at time t . Incumbent firm i has to sell its assets
in order to exit the industry, and buyers for its assets arrive with hazard rate λ. Upon
arrival the buyer makes a take-it-or-leave-it offer of a scrap value, φit , drawn randomly
from a distribution F(·) with continuous and positive density. As in the discrete-time
model, the offered scrap value is private information and hence is a random variable
from the perspective of other firms. If it is above the incumbent firm’s continuation
value, the incumbent accepts it and leaves the industry. We let ψ(ωit , ω−it ) (sometimes
abbreviated to ψit ) be the probability that incumbent firm i exits.

A continuing firm invests xit � 0 per unit of time and the probability of its ωit tran-
siting to ωit + 1 in any time interval is increasing in this investment. If we use the
familiar constant elasticity form that hazard becomes x

γ

it , where the parameter γ > 0 is
the elasticity of the success hazard with respect to investment expenditures or, equiva-
lently, (the negative of) the elasticity of the expected time to an investment success. As
in the discrete-time model we allow for an industry wide shock which has a probability
of occurring of δ per unit of time and decreases the state of all incumbents by one if it
does occur.

We assume that there is always a finite number E of potential entrants. Potential en-
trant i has to acquire assets to enter the industry. Sellers of assets arrive with hazard rate
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λe and make a take-it-or-leave-it offers of φe
it , which is assumed to be drawn randomly

from a distribution Fe(·) with continuous and positive density. If the value of entering at
state ωe exceeds this entry cost the potential entrant i accepts the offer and immediately
begins to invest. We let re(ωt ) denote the probability that potential entrant i accepts the
offer and enters the industry.

At time t the hazard rate of a jump occurring depends on the firms’ investment, entry,
and exit policies at the given state; i.e. on xt = (x1t , . . . , xnt ), ψt = (ψ1t , . . . , ψnt ), and
re(ωt ). If a jump occurs at time t then the change in the state of the industry depends
on what generated the jump, and the transition rules given above. More specifically if
we let μ(ω′ | ωt , xt , ψt , r

e
t ) be the hazard rate of a jump to ω′ occurring conditional on

current polices and ω we have

(16)μ
(
ω′ | ωt , xt , ψt , r

e
t

) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λψit if ω′ = (∅, ω−it ) for i = 1, . . . , nt ,

x
γ

it if ω′ = (ωit + 1, ω−it )

for i = 1, . . . , nt ,

Eλere
t if ω′ = ωt ∪ ωe,

δ if ω′ = (ω1t − 1, . . . , ωnt − 1),

where ωe ∪ωt is shorthand for the vector obtained by adding an ωe to the vector ωt and
reordering the result appropriately.22

The savings in the computation of the expectation over successor states results from
the fact that to form that expectation we need only sum over the 2n + 2 distinct ω′
with positive hazards. This occurs because the model implies that in a short time in-
terval there will be (with probability arbitrarily close to one) at most one jump. In the
discrete-time model we must keep track of all possible combinations of firms’ transi-
tions between time t and time t + 1. Thus the computational burden of computing the
expectation over successor states in the continuous-time model grows linearly in the
number of firms, thereby avoiding the curse of dimensionality in that expectation.

Equilibrium At time t player i chooses an action xit that depends solely on the current
state ωt . As in the discrete-time model, given that all his rivals adopt a Markovian
strategy, a player faces a dynamic programming problem and Bellman’s (1957) principle
of optimality implies that he can do no better than to also adopt a Markovian strategy.
For a statement of the principle of optimality in a continuous-time setting see, e.g.,
Intriligator (1971, p. 327). Furthermore, although the player gets to pick his action from
scratch at each point in time, his optimal action changes only when the state of the game
changes.

An incumbent’s problem Suppose that the industry is in state ω. The Bellman equation
for incumbent firm i is similar to the one in discrete time. To see this reinterpret π(·)

22 Were we to add the possibility of a firm specific depreciation component, we would add a hazard for
ω′ = (ωit − 1, ω−it ) for i = 1, . . . , nt to the hazards defined above. Note that

∑
ω′ μ(ω′ | ωt , xt , ψt , r

e
t ) is

the hazard rate of a change in the state of the game.
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and xi as flows per unit of time and note that over a short interval of length Δ > 0
incumbent firm i solves the dynamic programming problem given by

V (ωi, ω−i ) ≈ max
xi�0

(
π(ωi, ω−i ) − xi

)
Δ

+ (1 − ρΔ)E
{
max

{
χφ′, V (ω′

i , ω
′−i )

} | ωi, ω−i , xi

}
,

where (1 − ρΔ) ≈ e−ρΔ is the analog to the discrete-time discount factor β, χ is an in-
dicator function which takes the value of one if a potential purchaser of the firm’s assets
arrives at the end of the interval of length Δ, and it is understood that the expectations
presumes all other agents are making equilibrium choices. Evaluating the right-hand
side of this equation we get

V (ωi, ω−i ) ≈ max
xi�0

(
π(ωi, ω−i ) − xi

)
Δ

+ (1 − Δρ)

[
λψ(ωi, ω−i )ΔE

[
φ | φ � V (ωi, ω−i )

]
+

∑
ω′

i ,ω
′−i

qc(ω′
i , ω

′−i | ωi, ω−i , xi)ΔV (ω′
i , ω

′−i )

+
(

1 − λψ(ωi, ω−i )Δ

−
∑

ω′
i ,ω

′−i

qc(ω′
i , ω

′−i | ωi, ω−i , xi)Δ

)
V (ωi, ω−i )

]
,

where

ψ(ωi, ω−i ) = 1 − F
(
V (ωi, ω−i )

)
is the probability of exit and

qc(ω′
i , ω

′−i | ωi, ω−i , xi)

(17)= μ
(
ω′

i , ω
′−i | ωi, ω−i , xi, x−i (ωi, ω−i ), 0, ψ−i (ωi, ω−i ), r

e(ωi, ω−i )
)

are the equilibrium perceptions of incumbent firm i about state-to-state transitions. The
value of zero for ψi reflects the fact that these perceptions are conditional on continuing
on in the industry.

This last equation breaks up the hazard rate of a change in the state of the industry
into a part that is due to exit, λψi(·), and a part that is due to all other possible change in
the state,

∑
ω′

i ,ω
′−i

qc(ω′
i , ω

′−i | ωi, ω−i , xi). The first term reflects the fact that the firm
earns the flow profits minus investment over the Δ period. Exit occurs with probability
λψi(·)Δ and, similar to the discrete-time model, the expected scrap value conditional
on exiting is E{φ | φ � V (ωi, ω−i )} rather than its unconditional expectation E{φ}.
The next term covers the possibility of some other change in the state, including an



Ch. 30: A Framework for Applied Dynamic Analysis in IO 1923

investment success and a depreciation shock. The final term covers the possibility that
nothing changes between time t and time t + Δ.

As Δ → 0, the above equation simplifies to the Bellman equation

ρV (ωi, ω−i ) = max
xi�0

π(ωi, ω−i ) − xi

+ λψ(ωi, ω−i )
(
E
[
φ | φ � V (ωi, ω−i )

] − V (ωi, ω−i )
)

(18)

+
∑

ω′
i ,ω

′−i

qc(ω′
i , ω

′−i | ωi, ω−i , xi)
(
V (ω′

i , ω
′−i ) − V (ωi, ω−i )

)
.

Hence, V (ωi, ω−i ) can be interpreted as the asset value to incumbent firm i of partici-
pating in the game. This asset is priced by requiring that the opportunity cost of holding
it, ρV (ωi, ω−i ), equals the current cash flow, π(ωi, ω−i )−xi , plus the expected capital
gain or loss due to exit or some other change in the state.

The strategy of incumbent firm i is found by carrying out the maximization problem
on the RHS of the Bellman equation (18). In particular, the optimal investment decision
is

x(ωi, ω−i ) = arg max
xi

−xi

(19)

+
∑

ω′
i ,ω

′−i

qc(ω′
i , ω

′−i | ωi, ω−i , xi)
(
V (ω′

i , ω
′−i ) − V (ωi, ω−i )

)
.

Given a success hazard of x
γ

i with 0 < γ < 1, this simplifies to

x(ωi, ω−i ) = max
{
0,
(
γ
(
V (ωi + 1, ω−i ) − V (ωi, ω−i )

)) 1
1−γ

}
.

More generally, the optimal investment decision satisfies a Kuhn–Tucker condition sim-
ilar to the discrete-time model. An incumbent exits if the optimized continuation value
is less than the offered scrap value. This gives an exit probability of

(20)ψ(ωi, ω−i ) = 1 − F
(
V (ωi, ω−i )

)
.

An entrant’s problem Suppose that the industry is in state ω. If V (ω,ωe) is the value
of entering the industry in state ωe (holding fixed the other firms in state ω) and con-
tinuing on as an incumbent, then an entrant will enter if and only if V (ω,ωe) � φe.
Consequently the probability of entry conditional on a seller of assets appearing at a
particular instant is

(21)re(ω) = Fe
(
V
(
ω,ωe

))
,

and the hazard rate of entry is Eλere(ω).
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Computation While Doraszelski and Judd (2004) use a Gauss–Seidel algorithm to
compute the equilibrium to their continuous-time model, here we provide a Gauss–
Jacobi algorithm that is analogous to Pakes and McGuire (1994) algorithm for the
discrete-time model. As usual we begin with an initial set of values and policies for
all states ω ∈ S◦. Iteration l then maps old guesses into new guesses as it cycles over
the state space S◦ in some predetermined order.

Specifically, to update the values and policies for an incumbent firm in state ω, we
proceed as follows. First, we use the optimality condition in Equation (19) to update the
investment decision as

xl(ωi, ω−i ) = arg max
xi

−xi +
∑

ω′
i ,ω

′−i

qc,l−1(ω′
i , ω

′−i | ωi, ω−i , xi)

× (
V l−1(ω′

i , ω
′−i ) − V l−1(ωi, ω−i )

)
,

where qc,l−1(ω′
i , ω

′−i | ωi, ω−i , xi) is constructed by substituting the policies of the
other firms from the previous iteration into Equation (17). Second, we use Equation (20)
to update the exit decision as

ψl(ωi, ω−i ) = 1 − F
(
V l−1(ωi, ω−i )

)
.

Third, we use xl(ωi, ω−i ) and ψl(ωi, ω−i ) to update the value as

V l(ωi, ω−i )

= 1

ρ + λψl(ωi, ω−i ) + ∑
ω′

i ,ω
′−i

qc,l−1(ω′
i , ω

′−i | ωi, ω−i , xl(ωi, ω−i ))

×
{

π(ωi, ω−i ) − xl(ωi, ω−i ) + λψl(ωi, ω−i )E
[
φ | φ � V l−1(ωi, ω−i )

]
(22)+

∑
ω′

i ,ω
′−i

qc,l−1(ω′
i , ω

′−i | ωi, ω−i , x
l(ωi, ω−i )

)
V l−1(ω′

i , ω
′−i )

}
.

By rearranging Equation (18) and dividing through by the sum of the discount factor
and the hazard rate of a change in the state of the industry, we ensure that Equation (22)
would be a contraction were we to iterate on it holding the policies of the other firms
fixed (just as it is in the equation which updates values in the discrete-time model).
Fourth, we update the entry probability conditional on the appearance of a seller of
assets by setting

re,l(ω) = Fe
(
V l−1(ω,ωe

))
.

The smaller number in successor states in the continuous-time model may allow us
to speed up the computations in one other way. Prior to adding each of the terms that
enter in the expectation over successor states, both the continuous- and the discrete-time
algorithms need to look them up in computer memory. This requires the algorithms
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Table 30.2
Time to convergence and ratio of discrete to continuous time in terms of time per iteration, number of itera-
tions, and time to convergence. Stopping rule is “distance to truth < 10−4”. Entries in italics are based on an

estimated 119 iterations to convergence in discrete time

#Firms
Discrete time
(min)

Continuous time
(min)

Ratio time
per iteration

Ratio number
of iterations

Ratio time to
convergence

2 1.80 × 10−4 1.12 × 10−4 1.73 0.93 1.61
3 1.42 × 10−3 8.83 × 10−4 2.88 0.56 1.60
4 1.13 × 10−2 4.43 × 10−3 6.10 0.42 2.54
5 8.78 × 10−2 1.70 × 10−2 14.57 0.36 5.18
6 6.42 × 10−1 5.34 × 10−2 37.12 0.32 12.03
7 4.44 × 100 1.47 × 10−1 98.26 0.31 30.19
8 2.67 × 101 3.56 × 10−1 249.38 0.30 74.94
9 1.66 × 102 7.95 × 10−1 709.04 0.29 208.85

10 9.28 × 102 1.77 × 100 1800.00 0.29 523.72
11 4.94 × 103 3.30 × 100 5187.50 0.29 1498.33
12 2.46 × 104 6.18 × 100 13,770.00 0.29 3977.26
13 1.27 × 105 1.13 × 101 39,033.56 0.29 11,246.96
14 6.00 × 105 2.02 × 101 103,195.27 0.29 29,734.23

Source: Doraszelski and Judd (2004).

to compute the addresses of the successor states in computer memory and imposes
a further cost. One way to speed up the computations is to compute these addresses
once and then store them for future reference. Precomputed addresses decreases running
times but increases memory requirements. When the number of successor states is small
enough the savings from this prior computation outweigh the costs, so it is frequently
useful in the continuous-time model, but not in the discrete-time model. We note also
that the homotopy methods that we discuss in Section 6 can use the continuous-time
models just as the Gaussian methods described here do, and that this would result in
similar reductions of the computational burden.

Example Doraszelski and Judd (2004) use a modified version of the Pakes and
McGuire (1994) quality ladder model to compare the continuous- and discrete-time
approaches. In order to avoid the existence problems that may arise from the discrete
nature of firms’ entry and exit decision (see Section 3.1 for details), they abstract from
entry and exit. Moreover, they differ from the original quality ladder model in that their
shocks are independent across firms whereas Pakes and McGuire (1994) assume an
industry-wide shock (see Section 2).

As Table 30.2 shows, each iteration of the continuous-time algorithm is far faster than
its discrete-time equivalent. Partly offsetting this is the fact that for comparable games
the continuous-time algorithm needs more iterations to converge to the equilibrium.
The reason that the continuous-time algorithm suffers an iteration penalty is that the
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continuous-time “contraction factor”, i.e.∑
ω′

i ,ω
′−i

qc,l−1(ω′
i , ω

′−i | ωi, ω−i , x
l(ωi, ω−i ))

ρ + λψl(ωi, ω−i ) + ∑
ω′

i ,ω
′−i

qc,l−1(ω′
i , ω

′−i | ωi, ω−i , xl(ωi, ω−i ))

in Equation (22) varies with firms’ policies and substantially exceeds the discrete-time
discount factor β. Even though the continuous-time algorithm needs more iterations,
the loss in the number of iterations is small when compared to the gain from avoiding
the curse of dimensionality and the (much smaller) gain from precomputed addresses.
Table 30.2 illustrates this comparison and the total gain from continuous time. Contin-
uous time beats discrete time by 60% if n = 3, a factor of 12 if n = 6, a factor of 209 if
n = 9, a factor of 3977 if n = 12, and a factor of 29,734 if n = 14.

Software Doraszelski and Judd (2004) make a set of C codes with Matlab interface
available upon request.

5.3. Stochastic approximation algorithm

The stochastic algorithm breaks the curses of dimensionality in the number of elements
of the summand in calculating the expectation over future states and in the number of
states. It is able to do so because

• it never attempts to obtain accurate policies on the entire state space, just on a
recurrent class of points, and the number of points in the recurrent class need not
grow in any particular way with the dimension of the state space, and

• it never calculates integrals over possible future values, rather it approximates those
integrals with an average of past outcomes.

To ease exposition of how this is done this section will modify the presentation in two
ways. First we will initially assume that the exit and entry costs are fixed numbers, our
(φ, φe), rather than draws from distributions, and that there is only one potential entrant
in each period (who will either enter or not as a deterministic function of equilibrium
values). Accordingly since all incumbents have the same φ we do not include φ as an
argument of the value function. We include a paragraph indicating how to modify the
algorithm to revert to the initial specification below.

Second we will rewrite the value function in a way that makes it explicit that the equi-
librium conditions can be expressed as a fixed point in the {W(·)}, i.e. in the expected
discounted value of future net cash flows conditional on the different possible outcomes
of the firm’s investment expenditures, rather than as a fixed point in the values per se.
That is we rewrite the fixed point conditions at every ω ∈ S◦ so that incumbent values
are given by

V (ωi, ω−i | W) = π(ωi, ω−i )

(23)

+ max

{
φ, max

xi

(
−xi + β

∑
ν

W(ν | ωi, ω−i )p(ν | xi)

)}
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potential entrants values are given by

(24)

V
(
ωe, ω | W

) = max

{
0,−φe + max

xe

(
−xe + β

∑
ν

W
(
ν | ωe, ω

)
p
(
ν | xe

))}

and

(25)W(ν | ωi, ω−i ) =
∑
ω′−i ,η

V (ωi + ν − η, ω′−i | W)q(ω′−i , ω, η)p(η),

where q(ω′−i , ω, η) are derived from the policies generated by Equations (23) and (24)
and the primitives of the problem. Note that here and below when i = e it is understood
that ω−i = ω, the vector of all of the incumbents ω’s.

Writing the value function in this way makes it clear that the W(·) are sufficient sta-
tistics for agents’ behavior. That is if we knew the W(·)’s we would know equilibrium
policies and values. The stochastic algorithm recasts the search for equilibrium as a
search for a set of numbers, the {W(·)}, that satisfy the fixed point implicit in the defi-
nition of the value function in terms of W(·), our V (· | W) in Equations (23) and (24),
and the definition of W(·) in terms of V (· | W) in Equation (25).

Iterative search procedure The stochastic algorithm is also iterative. However in con-
trast to the other algorithms discussed here it is asynchronous; it only calculates policies
for a single state at each iteration. Consequently it must hold in memory both

• a location, and
• estimates of the expected discounted value of the future net cash flows that would

result from each possible outcome of each firm’s actions (i.e. of the W(·)’s in
Equations (23) and (24)).

Let W(ω) refer to the vector of values of W(ν; ωi, ω−i ) associated with the in-
cumbents and potential entrant at ω, W refer to the entire collection of W(ω) (so
W = {W(ω): ω ∈ S◦}), and l index iterations. Then an iteration must update both
the location, say ωl , and the estimates of equilibrium W(·), or Wl .

In the first step of the update incumbents and the potential entrant at the current lo-
cation chose the policies that maximizes the current iteration’s estimate of expected
discounted values of net cash flows. That is the first step substitutes components of
Wl(ωl) for the equilibrium components of W(ω) appearing in Equations (23) and (24),
and then determines the optimal policies implied by these estimates in a manner analo-
gous to that described in Equations (4), (6), and (9) above.

These policies determine the distribution of the next location. To get the actual re-
alization of that location we take computer generated pseudo-random draws from the
distributions determined by these policies and the primitives of the model. Then a poten-
tial entrants whose policy was to enter does so at the state determined by the simulated
draws, incumbents whose policy were to continue update their state with their simulated
draws, and incumbents whose policy was to exit do so. More precisely the location of
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the firms active in l + 1 are given by ωl
i + νl+1

i − ηl+1 for continuing incumbents and
ωe + νl+1

e − ηl+1 for a new entrant that enters. Here the νl+1
i and νl+1

e are draws from
the distributions p(ν | xl

i ) and p(ν | xl
e), where the x’s are the policies determined

above, while ηl+1 is a draw from p(η) (the distribution of increments to the outside
alternative). The vector of new states, re-ordered to be in their natural order, becomes
ωl+1, the new location.

To complete the iteration we need also to update the estimates of the W . We only
update the estimates of {W(ωl)} (the components of W associated with the location of
the algorithm at iteration l). From Equation (25), each equilibrium W(ν; ωi, ω−i ) is an
expectations of the discounted value of the firm’s state in the next period conditional
on a realization of its own investment outcome. The expectation is over the possible
outcome of the competitors’ states and of the outside alternative.

The update of the estimate of W(ωl) acts as if the random draws on the outcomes
of the competitors’ states and of the outside alternative are random draws from the
equilibrium distribution of outcomes for the competitors’ states and from the outside
alternative; i.e. as if they are random draws from the equilibrium q(ω′−i , ω, η) and
p(η). It then evaluates the integrand at the new state by acting as if the current iter-
ation’s estimate of W(ωl), our Wl(ωl), were the equilibrium values of W(ωl). That is
it acts as if V (ωl

i + ν − ηl+1, ωl+1
−i | Wl), formed from the random draws and Wl(ωl)

and computed as in Equation (23), is the equilibrium value associated with that point.
V (ωl

i + ν − ηl+1, ωl+1
−i | Wl) is then treated as a random draw from the integral de-

termining W and averaged with the current iterations estimate of W , or Wl , to obtain
Wl+1. That is to form its Wl+1(·) the algorithm chooses an α(ω, l) > 0 and sets

Wl+1(ν; ωl
i, ω

l−i

) = 1

1 + α(ω, l + 1)
V
(
ωl

i + ν − ηl+1, ωl+1
−i | Wl

)
(26)+ α(ω, l)

1 + α(ω, l + 1)
W l(ν; ωi, ω−i ).

So Wl+1(νi; ωi, ω−i ) − Wl(νi; ωi, ω−i ) is greater than, equal to, or less than zero ac-
cording as V (ωl

i + ν − ηl+1, ωl+1
−i | Wl) − Wl(νi; ωi, ω−i ) is greater than, equal to, or

less than zero.
If α(ω, l) equals the number of times the state ω = ωl had been visited prior to iter-

ation l, then the formulae in (26) produces the simple of average of the values obtained
from those visits. In general there are “better” ways of choosing the α(·) then this. This
because the earlier outcomes should be less precise estimates of the numbers we are af-
ter (and hence should receive less weight; we provide one example below). On the other
hand, all proposed weighting schemes satisfy Robbins and Monro (1951) convergence
conditions; i.e. the sum of the weight increase without bound as the number of visits
increase, but the sum of the squared weights remains bounded (conditions which are
satisfied by simple averages).

Two conceptual points about the updates. First if Wl(ωl) equals the equilibrium
W(ωl) then the expectation of the V (ωl

i + ν − ηl+1, ωl+1
−i | Wl) is also the equilib-
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rium W(ωl). That is once we are at the equilibrium values of W(ωl) we will tend to
stay there. However as is explained below the algorithm only repeatedly visits points
in a recurrent subset of the state space. As a result we should not expect the algorithm
to generate precise estimates of the equilibrium W(ω)’s associated with ω’s that are
outside the recurrent class. Consequently below we modify the conditions which define
equilibrium policies and values so that they pertain only to a recurrent class of points,
and show why they are relevant for subgames starting from an initial condition in the re-
current class. We then discuss tests of whether these equilibrium conditions are satisfied
by the estimate of W outputted by the algorithm.

Second use of the Monte Carlo draw to both determine the evolution of the state, and
to estimate the returns to alternative actions, mimics what would happen were agents
actually implementing policies based on our procedure and then using the actual market
outcomes to update their estimate of the implications of their actions. This provides both
the link to the learning literature in economic theory, and the reason one might want to
use the algorithm as a behavioral model in certain instances. That is if we knew the
W(·)’s that the agents’ perceived at any point in time, and were willing to specify how
those agents updated their perceptions of W as a result of information that accumulated
over time, we could generate a probability distribution over sample paths for both the
policies followed and the states achieved.

Computational burden We now review the reasons for the stochastic algorithm’s com-
putational savings. First the location of the stochastic algorithm will eventually wander
into a recurrent class of points (our R), and once within that R will stay within it forever
(with probability one). That is after an initial run in period the stochastic algorithm only
updates the values and policies associated with points in this recurrent class (the other
algorithms update on the entire state space). In the examples we have computed the
recurrent class tends to grow linearly in the number of state variables, thus overcoming
one of the two aspects of the curse of dimensionality noted in the last section.

Second the stochastic algorithm does not require a summation over possible future
states to update the information in memory at each point visited. The computational
burden at a point involves only; determining the optimal policies given Wl(ωl), drawing
the random variables whose distributions are determined by these policies, and updating
the estimates of W(ω) with Equation (26). The computational burden of these tasks
grows linearly in the number of firms active at the state, thus eliminating the second
aspect of the curse of dimensionality noted in the last section.

However unlike the deterministic updates used in the other algorithms discussed here,
the Monte Carlo estimate of W(ω) contains the variance induced by the simulated draws
on outcomes. If the estimates of W(ω) settles down, the precision of the Monte Carlo
estimate of the integral will become proportional to the number of times the state is
visited. As a result the accuracy of the estimates at a point depend on the number of
visits to the point, and sufficient accuracy can take a larger number of iterations per
point than the other algorithms discussed here. On the other hand, the precision of the
Monte Carlo estimate of the integral does not (necessarily) depend on the dimension of
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the integral being estimated, while the cost of doing the summation explicitly does. So
the number of visits needed for given accuracy need not (and in our experience does
not) depend on the number of state variables.

Equilibrium policies and stopping rules Let W̃ be a particular value of W . As noted
once we substitute W̃ (ω) into Equations (23) and (24) we determine policies for all
agents active at that ω (though these policies will not, in general, be equilibrium
policies). These policies determine the probabilities of transiting to any future state
if the policies generated by W̃ (ω) are followed. Let those probabilities be given by
q(ω′, ω | W̃ (ω)), ∀ω′ ∈ S◦. Now order the states and arrange these probabilities into a
row vector in that order, say q(ω | W̃ (ω)). Do this for each ω ∈ S◦, and combine the
resultant rows into a matrix whose rows are ordered by the same order used to order
the elements in each row. The result is a Markov matrix (or transition kernel) for the
industry structures, say Q(·,· | W̃ ). This matrix defines the Markov process for industry
structures that would be generated if all agents acted as if W̃ were the true expected
discounted values of alternative outcomes.

Any finite state Markov kernel generates a stochastic process with at least one recur-
rent class. Say R̃ ⊂ S◦ is a recurrent class of the Markov process defined by Q(·,· | W̃ ),
i.e. if we start the process at an ω0 ∈ R̃ and follow the policies generated by W̃ then
each element of all possible sequences, {ωk}∞k=0, will be in R̃ with probability one. Call
the subvector of W̃ which contains the elements of W̃ associated with the points in R̃,
W̃ | R̃. Since R̃ is a recurrent class of Q(·,· | W̃ ), W̃ | R̃ contains all information
needed to analyze any game starting from any initial condition ω0 ∈ R̃. That is W̃ | R̃

generates policies “for subgames from R̃”.
Pakes and McGuire (2001) provide conditions which insure that W̃ | R̃ generates

equilibrium policies for subgames from R̃. They then propose a procedure which iden-
tifies a recurrent class of Q(·,· | W̃ ), our R̃, and tests whether W̃ | R̃ satisfies the
equilibrium conditions. We explain their procedure next. More details on the concep-
tual issues underlying these calculations are given below.

Say we want to test whether a subset of the W̃ outputted by the algorithm, and
the associated values and policies, are equilibrium policies for a recurrent class of
Q(·,· | W̃ ). First we need to obtain a candidate for a recurrent class of Q(·,· | W̃ ).
To do so use the policies generated by W̃ to simulate {ωj }J1+J2

j=1 . Let R(J1, J2) be the
set of states visited at least once between j = J1 and j = J2. Then, as both J1 and
J2 − J1 → ∞, R(J1, J2) must converge to a recurrent class of the process Q(·,· | W̃ ).
As we shall see it typically does not take long to generate a million iterations of the
stochastic algorithm. As a result it is easy to simulate several million draws, throw out
a few million, and then consider the locations visited by the remainder as the recurrent
class.

Let W̃ | R̃(J1, J2) contain the components of the W̃ vector outputted from the algo-
rithm that are needed to obtain the policies for all the ω ∈ R(J1, J2). Pakes and McGuire
(2001) test of whether W | R̃(J1, J2) generates equilibrium policies for subgames start-
ing in R(J1, J2) consists of checking if Equations (23) and (24) are satisfied to sufficient
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accuracy with W computed from (25) after substituting V (· | W̃ ) for V (· | W) into that
equation. Sufficient accuracy is defined in terms of a norm on the ω ∈ R(J1, J2) (and
the comparison is made for each incumbent and potential entrant at those ω). Since the
stochastic algorithm is designed to obtain more accurate estimates of policies and values
for points that are visited more frequently, Pakes and McGuire (2001) suggest using a
weighted sum of squares norm with weights proportional to the number of visits to the
point. Note that this test is the same as the test used to stop the Gaussian algorithm in
Section 4 except that now we confine the test to points in R(J1, J2) and use a weighted
norm.

If the researcher is particularly interested in policies and values from a given point,
say a point which reflects the structure of a particular industry at a time of interest, the
test can be altered to reflect that fact. More generally the algorithm, as programmed in
Pakes and McGuire (2001), outputs a count of how many times each point has been
visited. This provides a good indication of how precisely the values and policies at the
given point have been estimated. Local restart procedures are advisable if, for some
reason, the researcher is interested in a point rarely visited by the natural progression of
the algorithm.

Note that the computational burden of the test in Pakes and McGuire (2001) goes
up either geometrically or exponentially in the dimension of the state space (depending
on the type of states). Moreover the test is the only aspect of the stochastic algorithm
whose computational burden grows more than linearly in the dimension of the state
space. So as we increase the number of state variables the computational burden of the
test eventually outweighs the burden of the rest of the algorithm (see below). As a result
Fershtman and Pakes (2005) developed an alternative test which both circumvents this
curse, and is easy to apply. We come back to this alternative test below.

Equilibrium: conceptual issues We now provide more detail on the conceptual issues
underlying the notion of equilibrium and the test (a reader not interested in these de-
tails should be able to skip this section and have no difficulty with the sections that
follow).

Formally the conditions being tested above are not sufficient to guarantee that the
policies and values outputted by the algorithm are Markov perfect equilibrium policies
and values for states in the recurrent class. To see this note that though all points in
the recurrent class only communicate with other points in the recurrent class if optimal
policies are followed, there are points in the recurrent class that could communicate with
points outside the recurrent class if feasible (though in-optimal) policies are followed.
When this occurs the V (·,· | W̃ ) needed to check Equation (25) will contain values
which the test does not insure are equilibrium values (since they are points which are
not in the recurrent class we do not test the condition in Equation (23) for them). For an
example of this recall that n is the maximum number of agents ever active, and consider
a state in R(J1, J2) with n firms active. To determine whether the policies at that state
are optimal we need to know what values would be were the potential entrant to enter
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and no incumbent exit; i.e. what the values would be if there were n + 1 firms active.
We do not check whether the values at such states satisfy our equilibrium conditions.23

Pakes and McGuire (2001) call points that are in R̃ but could communicate with
points outside of R̃ if feasible (though in-optimal) policies were followed, boundary
points of R̃. Points in R̃ that are not boundary points are called interior points of R̃.
Interior points could not communicate with a point outside of R̃ under any feasible
policy. They then show that when the test needs to use a V (·,· | W̃ ) associated with an
ω /∈ R̃ to compute a W (using Equation (25)) to check Equation (23) or (24) at a point
in R̃, then that V (·,· | W) need not satisfy the equilibrium condition (Equation (23) or
(24)) exactly; it only needs to be larger than the true equilibrium value. The reason is
that if the firm chooses not to undertake a policy that would lead them to a point outside
of R̃ when those points are evaluated too highly, we know they would not chose such
an action if those points were evaluated at their true values. They then consider ways of
bringing the weaker condition into the test for equilibrium at boundary points, and report
that boundary points are visited so infrequently that bringing in different reasonable
ways of checking these conditions had no effect on the estimates.24 We note, however,
that as in single agent applications of stochastic algorithms (see the references below),
to minimize the probability that the algorithm ignores relevant actions they initialized
the algorithm with an initial estimate of W (a W 0) thought to be much larger than the
equilibrium W (two candidates are the value function from the one firm problem and
π(ωi, ω−i )/(1 − β)). This tends to make the program stop at a set of W which are, if
anything, too large, and this in turn insures that the conditions required for boundary
points are satisfied (though we cannot prove this in the context of the dynamic games
that we are considering here).

Fershtman and Pakes (2005) treat this issue differently. They consider a notion of
equilibrium whose conditions can be consistently tested on actual data. They call their
equilibrium notion applied Markov perfect equilibrium; it is closely related to the no-
tion of self-confirming equilibrium in Fudenberg and Levine (1993). The conditions of
applied Markov perfect equilibrium only place restrictions on policies and values on the
recurrent class of points. Roughly those conditions are that (i) in equilibrium policies
at those points must be optimal with respect to the equilibrium W , and (ii) for every
(ωi, ω−i ) associated with a point in the recurrent class and every ν, W(ν;ωi, ω−i ) must
satisfy the fixed point condition in Equation (25) only if optimal policies indicate that
the probability of that ν is greater than zero. One test of the sufficient conditions for
applied Markov perfect equilibrium is the test introduced above, but they introduce a
test that is less computationally burdensome (see below).

23 Moreover since the algorithm does not visit points with n+1 agents active repeatedly, it cannot be expected
to produce an accurate estimates of the values at that point.
24 Given this fact they found it computationally efficient to set the probability of events that would lead
from an ω ∈ R(J1, J2) to a point outside of R(J1, J2) to zero, and renormalize the remaining probabilities
appropriately.
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Experience with stochastic algorithms Most of the experience with stochastic algo-
rithms is with single agent problems or zero sum games in which all points are recurrent
[for an easy to read review see Barto, Bradtke and Singh (1995)]. In these problems one
can generally prove convergence [in probability, or almost surely, see Bertsekas and
Tsitsiklis (1996)]. These proofs require one to start with an overestimate of the esti-
mated values (so all points are tried before they are discarded). The striking result from
the numerical exercises is that the imprecision in their estimates at points with little
weight in the ergodic distribution does not seem to impact adversely on the precision
of the estimates of the values associated with points with heavy weight in the ergodic
distribution (see also below).

Once we move to dynamic games we cannot guarantee convergence of the stochastic
algorithm (just as we could not for the deterministic algorithms discussed above). On
the other hand, the two applications of the stochastic algorithm we know of have never
experienced a convergence problem. Interestingly those models worked with the version
of the EP model which assumes a single known entry fee and exit value, just as we have
done in this section. This is precisely the version of the EP model which Pakes and
McGuire (1994) found often generate convergence problems when computed with their
Gaussian algorithm. This makes the absence of convergence problems in the stochastic
algorithm particularly notable.

To allow for random entry and exit fees we need only modify the algorithm slightly.
Equation (23) must be modified to read

V (ωi, ω−i | W) = π(ωi, ω−i ) + [
1 − r(ωi, ω−i | W)

]
φ(ωi, ω−i | W)

+ r(ωi, ω−i | W)

{
− x(ωi, ω−i | W)

+ β
∑
ν

W(ν | ωi, ω−i )p
(
ν | x(ωi, ω−i | W)

)}
,

where r(ωi, ω−i | W) is the probability of drawing a random exit fee less than the
continuation value, and φ(ωi, ω−i | W) is the expected value of the exit fee conditional
on it being greater than the continuation value. These values are calculated from the
exit policy at each (ωi, ω−i ) and held in memory. Similarly the entry policy becomes a
value for φe above which the potential entrant does not enter, and that value is also held
in memory at (ωi, ω−i ).

Example To illustrate Pakes and McGuire (2001) computed the same equilibrium
computed pointwise in Pakes and McGuire (1994), and showed that the stochastic al-
gorithm computed estimates whose implications are indistinguishable from those of the
Gaussian algorithm.

The model in Pakes and McGuire (1994) has only one state per firm, so the only
dimension in which we can trace out the relationship between the components of com-
putational burden, and the size of the problem, is as we increase n̄. n̄ for Pakes and
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McGuire (1994) problem is largely determined by their M (the number of consumers
serviced by the market). So we will focus on how the components of the computational
burden changes as we push M up from Pakes and McGuire (1994) initial M = 5 by
units of 1 until M = 10. Recall that we know that the time per state in the stochastic
algorithm scales linearly in the number of firms, but we do not know how the size of
the recurrent class increases in the number of state variables, so this is the issue we are
particularly interested in.

The version of the algorithm used in Pakes and McGuire (2001) downweighs the
early estimates of continuation values (which, recall, are imprecisely estimated). It does
so by restarting the algorithm after each of the first seven million iterations, using the
terminal values from those iterations as starting values of the next million iterations. The
algorithm then begins a long run which was interrupted every million iterations to run
the test. The test compared the estimates of the values obtained from the current estimate
of W and Equations (23) and (24) to the estimates obtained from Equations (23) and
(24) when the W estimates were obtained from the calculation in Equation (25) (the
weights were set proportional to the number of visits to the location in the last million
draws). If the weighted correlation between the two estimates of the value function
was over 0.995 and the difference between their weighted means were less than 1%,
the algorithm stopped. The bottom panel of the table provides statistics which enable
us to assess how the computational burden changed with market size. The top panel
of Table 30.3 provides the distribution of the number of firm’s active from a 100,000
period simulation and our estimated policies.

The number of points in the last row refers to the number of points visited at least
once in the last million iterations. This will be our approximation to the size of the
recurrent class (#R). There were 21,300 such points when M = 5. As expected n

increases in M . However #R does not increase geometrically in n. The top part of
the panel makes it clear why; when we increase M the number of distinct points at
which there are a large number of firms active does increase, but the larger market no
longer supports configurations with a small number of firms. Indeed though the function
relating #R to M seems initially convex, it then turns concave giving the impression
that it may asymptote to a finite upper bound. The ratio of the number of states at
which we compute policies and values in the stochastic algorithm to that in the Gaussian
algorithms described above is #R/#S. #R/#S ≈ 3.3% when n = 6, about 0.4% when
n = 10 (then #S ≈ 3.2 × 107), and would decline further for larger n. We note here
that we have gotten reductions at least as large as this when we computed equilibria to
models that had more than one state per firm. In particular in models where products
had more than one dimension which could vary with the firms’ investments, there were
typically many combinations of characteristics that were not profitable to produce, and
the stochastic algorithm would simply never visit them.

The other two components of computational time are the time needed to update values
and compute policies at each state, and the number of iterations. As noted we expected
the time per state to be a function of the number of firms active at the state, and what
the table shows is that the ratio of the average number of active firms to the time per
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Table 30.3
Comparisons for increasing market sizea

M = 5 6 7 8 9 10

Percentage of equilibria with n firms active
n =
3 58.3 00.8 00.0 00.0 00.0 00.0
4 33.7 77.5 48.9 04.4 00.7 00.1
5 06.3 16.8 41.4 62.3 33.0 07.2
6 01.5 04.2 07.3 25.0 44.3 41.8
7 00.2 00.6 02.2 06.5 15.3 34.3
8 00.0 00.1 00.2 01.7 05.9 13.1
9 00.0 00.0 00.0 00.0 00.8 03.5

10 00.0 00.0 00.0 00.0 00.0 00.0

Average n

3.43 4.26 4.64 5.39 5.95 6.64

Minutes per million iterations
5.5 6.5 7.5 8.6 10 11

Minutes per test
3.6 8.15 17.1 42.8 100 120

Number of iterations (millions)
7 + 5 7 + 2 7 + 21 7 + 4 7 + 9 7 + 3

Number of points (thousands)
21.3 30.5 44.2 68.1 98.0 117.5

Source: Pakes and McGuire (2001).
aAll runs were on a Sun SPARCStation 2.

million iterations was essentially constant as we increased M (it varied between 1.53
and 1.65 min). The good news was that the number of iterations until our test criteria
was satisfied did not tend to increase in M (though it did vary quite a bit between runs).

Thus absent test times, the average CPU time needed for our algorithm seems to grow
linearly in the average number of firms active. Given the theoretical discussion this is
as good as we could have expected. Comparing the level of our CPU times to those
from backward solution algorithms we find that when n = 6 the stochastic algorithm
took about a third of the CPU time, when n = 10 even the most optimistic projection
for the backward techniques leads to a ratio of CPU times of 0.09%. If n grew much
beyond that, or if there were more than one state variable per firm, the backward solution
algorithm simply could not be used (even on the most powerful of modern computing
equipment). In contrast, we have analyzed several such problems on our workstation.

As noted the test times do grow exponentially in the number of firms and in our runs
they rose from about 3 min when M = 5 to over two hours when M = 10. By M = 10
the algorithm spends ten times as much time computing the test statistic after each
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million iterations as it spends on the iterations themselves. So we now outline a modifi-
cation to the test due Fershtman and Pakes (2005) which circumvents this problem.

A more computationally efficient test Fershtman and Pakes (2005) provide a test of the
equilibrium conditions on the recurrent class whose: (i) computational burden scales lin-
early in both the number of points in the recurrent class and the number of states at each
point (and so is not subject to a curse of dimensionality), and (ii) has an interpretation
as a norm in the percentage difference between the actual expected values generated by
the estimate of W and the values implied by the Bellman equations (23) and (24).

Say we want to test whether a W̃ generates equilibrium policies and values on the
recurrent class. One way to view what we want a test to do is to measure the difference
between the estimate of V (ωi, ω−i | W̃ ) from Equations (23) and (24), and the expected
discounted values of future net cash flows that each agent would obtain were all agents
using the policies generated by W̃ . Fershtman and Pakes (2005) suggest approximating
the expected returns the agents would earn from following the policies generated by W̃

with averages of the discounted value of net cash flows earned from different sample
paths that are simulated using the policies generated by W̃ , and comparing that to the
values, V (ωi, ω−i | W̃ ), from Equations (23) and (24). The squared differences between
the V (ωi, ω−i | W̃ ) from these equations and the average of the discounted value over
the simulated sample paths is a sum of (i) the sampling variance in the average of the
discounted value of the simulated sample paths (we will refer to this as the sampling
variance term), and (ii) the difference between the expectation of the discounted net
cash flows from the simulated paths and the value functions estimates in Equations (23)
and (24) (we will refer to this as the “bias” term). Fershtman and Pakes (2005) subtract a
consistent estimate of the sampling variance term from this squared difference to obtain
a test statistic which, at least in the limit, will depend only on the bias term.

More precisely for each state in the recurrent class use the policies generated by W̃

to simulate the algorithm T iterations into the future and keep track of the discounted
value of net cash flows generated over those T iterations. Add this sum to the discounted
value Equation (23) assigns to the terminal state; i.e. if the terminal state is (ωT

i , ωT−i )

add βT V (ωT
i , ωT−i | W̃ ) as computed from Equation (23). Call this sum an estimated

value of the simulated path. Compute several independent estimates of the value of the
simulated path from each state, and compute the average and variance of those values.

If we let the average of the values of the simulated paths be V S(ωi, ω−i | W̃ , T ), and
E be the expectation operator over the simulated random draws then

E

(
V S(ωi, ω−i | W̃ , T )

V (ωi, ω−i | W̃ )
− 1

)2

= E

(
V S(ωi, ω−i | W̃ , T ) − E[V S(ωi, ω−i | W̃ )]

V (ωi, ω−i | W̃ )

)2

(27)+
(

E[V S(ωi, ω−i | W̃ , T )] − V (ωi, ω−i | W̃ )

V (ωi, ω−i | W̃ )

)2

.
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The first term in this expression is the variance term, and the second term is the bias.
Moreover the variance term can be unbiasedly estimated from the variance across the
simulated sample paths; i.e. we can form V̂ar

( V S(ωi ,ω−i )

V (ωi ,ω−i |W̃ )

)
such that

E

[
V̂ar

(
V S(ωi, ω−i )

V (ωi, ω−i | W̃ )

)]
= E

(
V S(ωi, ω−i | W̃ , T ) − E[V S(ωi, ω−i | W̃ )]

V (ωi, ω−i | W̃ )

)2

.

Consequently

E

[(
V S(ωi, ω−i | W̃ , T )

V (ωi, ω−i | W̃ )
− 1

)2

− V̂ar

(
V S(ωi, ω−i )

V (ωi, ω−i | W̃ )

)]
=
(

E[V S(ωi, ω−i | W̃ , T )] − V (ωi, ω−i | W̃ )

V (ωi, ω−i | W̃ )

)2

.

This provides us with an unbiased estimate of the bias term. Since the variance (and
higher-order moments) of this estimate of the bias is finite, any weighted average of in-
dependent estimates of the bias terms over the recurrent class of points will converge to
the same weighted average of the true bias term across these points (a.s.). It is weighted
averages of this form that Fershtman and Pakes (2005) use as a test statistic.

Potential usefulness The usefulness of the stochastic algorithm is likely to vary from
problem to problem. There are some problems which it cannot be applied to without
further adaptation; a good example being problems in which we want to constrain “off
the equilibrium path” behavior in a more detailed way (as in many collusion models).
Where we can use it, the tradeoff between using it and the other algorithms can be
thought of as a tradeoff between number of iterations, number of states, and the time per
state at each iteration. The stochastic algorithm can be expected to do particularly well
when (i) the dimension of the recurrent class is small relative to the dimension of the
state space, and (ii) the formulae for computing the probability distribution over future
possible outcomes is complicated. This last point is particularly important in comput-
ing equilibria to models with asymmetric information, as the stochastic algorithm can
compute those equilibria without ever actually computing posterior distributions at any
given state [and the posteriors are often horribly complex; for more detail see Fershtman
and Pakes (2005)].

5.4. Function approximation methods

Function approximation techniques attempt to approximate either the value or the pol-
icy function (or both) by a sufficiently rich set of basis functions (e.g. polynomials or
splines). Judd (1998) discusses these methods in some detail in the context of dynamic
programming models.
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In the context of dynamic games function approximation methods have been used
mostly for dynamic games with a continuum of states and without entry and exit. These
games pose both theoretical [see, e.g., Whitt (1980)] and computational challenges. In
particular, they require an entirely different set of techniques to compute an equilibrium
since players’ values and policies can no longer be represented as (finite-dimensional)
vectors and instead have to be represented as (infinite-dimensional) functions. Judd
(1998) gives an introduction to these so-called projection techniques and Rui and Mi-
randa (1996, 2001), Doraszelski (2003), and Hall, Royer and Van Audenrode (2003)
apply them to dynamic games with a continuum of states.

There has been some attempt to apply these techniques to games with discrete state
spaces. Pakes and McGuire (1994) provide one example and some theoretical results
on the dimensionality reductions available from these techniques. Briefly they consider
a polynomial basis, and project an initial estimate of the value functions at a small
number of points down onto this basis to obtain initial coefficients of the basis functions.
These coefficients and the basis functions allow one to construct continuation values for
each firm operating at the basis points. These continuation values, in turn, can be used
to obtain policies and new estimates of the values for all firms active at those points.
The new value functions are projected down against the basis functions to obtain new
coefficients and the process is repeated.

Pakes and McGuire (1994) show that if one restricts the basis functions to functions
which preserve symmetry and anonymity (what they call an “exchangeable” basis), the
number of basis functions needed for any order of polynomial, and hence the number
of points we need to keep track of, is bounded by a finite constant (i.e. does not grow
in n at all). Moreover moment generating functions can be used to reduce the computa-
tional burden from computing continuation values at a given point. So the potential for
decreasing the computational burden of computing equilibrium for large markets using
this technique is dramatic. On the other hand, they also report that in their particular
example with n = 6 there were extensive convergence problems.

The convergence problems were likely to result from the fact that in their model the
firm’s value function can be a discontinuous function of its competitor’s policies (entry
and exit by competitors can cause jumps in the value function), and the polynomials
they used have problems approximating discontinuities. So these problems may well
disappear if either different forms of approximations were used (e.g. splines), or if the
number of firms grew larger (in which case exit by any one firm should have a smaller
effect on the value of its competitors). This suggests that function approximation might
still be a useful technique for problems with a large number of firms (as is often the
case in the dynamic models used in trade, development, and productivity), though such
applications might require some further technical developments.

5.5. Oblivious equilibrium

Weintraub, Benkard and Van Roy (2005) propose an approximation method for analyz-
ing EP-style dynamic models of imperfect competition. They derive an algorithm for
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computing an “oblivious” equilibrium in which each firm is assumed to make decisions
based only on its own state, an aggregate shock, and knowledge of the long run average
industry state. When firms chose their controls they ignore the influence of current and
past values of the aggregate shock, and current information about rivals’ states, on likely
future states.

They prove that if the distribution of firms obeys a certain “light-tail” condition, then
as the market size becomes large oblivious equilibrium closely approximates a Markov
perfect equilibrium in a certain sense. The light tail condition is more likely to be satis-
fied in industries where there are no firms that are clearly dominant.

They also derive a performance bound that can be used to assess how well the ap-
proximation performs in any given applied problem. Finally, Weintraub, Benkard and
Van Roy (2005) apply these methods to a dynamic investment game and find that the
approximation typically works well for markets with hundreds of firms, and in some
cases works well even for markets with only tens of firms.

6. Computing multiple equilibria

Below we review the homotopy method to computing multiple equilibria in the EP
framework due to Besanko et al. (2004). At the end of this section, we briefly discuss
how the problem of multiple equilibria has been handled in other settings.

A drawback of all the computational methods discussed above is that they offer
no systematic approach to computing multiple equilibria. Homotopy or path-following
methods partially resolve this issue.25 Starting from a single equilibrium computed for
a particular value of the parameter vector, the homotopy algorithm traces out an en-
tire path of equilibria obtained by varying the parameter vector. Whenever we can find
such a path and the path folds back on itself, then the homotopy algorithm will identify
multiple equilibria. We note at the outset that there is no guarantee that any given path
computes all possible equilibria at a given value of the parameter vector [unless the sys-
tem of equations that defines the equilibrium happens to be polynomial; see Judd and
Schmedders (2004)]. Moreover, homotopy methods are computationally demanding.

We begin with a simple example which explains how the homotopy algorithm works.
Consider the single non-linear equation H(x, τ) = 0, where

(28)H(x, τ) = −15.289 − τ

1 + τ 4
+ 67.500x − 96.923x2 + 46.154x3.

25 Recall that two functions f : X → Y and g : X → Y from one topological space X to another Y are
called homotopic if one can be continuously deformed into the other, i.e., if there exists a continuous function
H : X × [0, 1] such that H(x, 0) = g(x) and H(x, 1) = f (x) for all x ∈ X. Such a deformation is called
a homotopy. See Zangwill and Garcia (1981) for an introduction to homotopy methods, Schmedders (1998,
1999) for an application to general equilibrium models with incomplete asset markets, and Berry and Pakes
(2006) for an application to estimating demand systems.
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Figure 30.3. Homotopy example. Source: Besanko et al. (2004).

Equation (28) implicitly defines the relationship between an endogenous variable x and
an exogenous parameter τ (in our case τ would be one of the parameters of the model).
The object of interest is the set of solutions H−1 = {(x, τ ) | H(x, τ) = 0} as graphed
in Figure 30.3. Inspection of Figure 30.3 shows that there are multiple solutions to
Equation (28), e.g., at τ = 0.3 there are three solutions: x = 0.610, x = 0.707, and
x = 0.783. Finding these solutions is trivial once the graph is drawn, but producing
the graph is less than straightforward even in this very simple case. Whether one solves
H(x, τ) = 0 for x taking τ as given or for τ taking x as given, the result is a multi-
valued correspondence, not a single-valued function.

To apply the homotopy method, we introduce an auxiliary variable s that indexes
each point on the graph starting at point A for s = 0 and ending at point D for s = s̄.
The graph is just the parametric path given by a function pair (x(s), τ (s)) that satisfies
H(x(s), τ (s)) = 0 or, equivalently, (x(s), τ (s)) ∈ H−1. Since there are infinitely many
such function pairs, we need a simple way to pick out a member of this family. To do
this, we differentiate H(x(s), τ (s)) = 0 with respect to s to obtain

(29)
∂H(x(s), τ (s))

∂x
x′(s) + ∂H(x(s), τ (s))

∂τ
τ ′(s) = 0.
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This single differential equation in two unknowns, x′(s) and τ ′(s), captures the condi-
tions that are required to remain “on path”. One possible approach for tracing out a path
in H−1 is thus to solve Equation (29) for the ratio x′(s)

τ ′(s) , i.e., the direction of the next
step along the path from s to s+ds. This approach, however, creates difficulties because
the ratio may switch from +∞ to −∞, e.g., at point B in Figure 30.3. So instead of
solving for the ratio, we solve for each term of the ratio. To do this, we use the system
of differential equations given by

(30)x′(s) = ∂H(x(s), τ (s))

∂τ
,

(31)τ ′(s) = −∂H(x(s), τ (s))

∂x

to determine the next step along the path. Now we have avoided the problem of dividing
by zero when the path folds back on itself.

These are the so-called basic differential equations for our simple example. Their
significance is that they reduce the task of tracing out the set of solutions to solving a
system of differential equations. Given an initial condition this is can be done using a
variety of methods [see, e.g., Judd (1998, ch. 10)]. In our example, note that if τ = 0,
then H(x, τ) = 0 is easily solved for x = 0.5. This provides the initial condition (point
A in Figure 30.3). From there the homotopy algorithm follows the path until it reaches
τ = 1 (point D). Whenever τ ′(s) switches sign from positive to negative (point B),
the path is bending backward and there are multiple solutions. Conversely, whenever
the sign of τ ′(s) switches back from negative to positive (point C), the path is bending
forward.26

Besanko et al. (2004) apply the homotopy method to computing equilibria in their
model of learning-by-doing and organizational forgetting. They write the system of non-
linear equations that defines an equilibrium as H(x, τ) = 0. The system contains the
Bellman equation and optimality conditions for each firm’s policy at each state in S◦.
τ is a parameter of the model; in their case the rate of depreciation δ. The object of
interest is the set of equilibria H−1 = {(x, τ ) | H(x, τ) = 0}.

Proceeding as in our simple example, they define a parametric path to be a set of
functions y(s) = (x(s), τ (s)) such that y(s) ∈ H−1. Here x(s) is the vector of value
functions, policies, and exit or entry probabilities associated with each firm at each state.
As s varies y(s) describes a path in H−1, that satisfies

H
(
y(s)

) = 0.

26 In computing equilibria to their learning-by-doing model Besanko et al. (2004) prove that on the portion
of the path that is backward bending (in Figure 30.3 this is the part of the path between points B and C) the
mapping that provides the iterations for the Pakes and McGuire (1994) algorithm has an eigenvalue outside
of the complex unit circle and is therefore unstable. It follows that, holding fixed the homotopy parameter,
“inbetween” two equilibria with τ ′(s) > 0, there is one equilibrium with τ ′(s) � 0 that cannot be computed
using the Pakes and McGuire (1994) algorithm.
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Differentiating both sides with respect to s yields the conditions that are required to
remain on path

(32)
∑

i

∂H(y(s))

∂yi

y′
i (s) = 0.

This is a system differential equations with the same number of unknowns as equations.
As before there is at least one solution and it obeys the basic differential equations

(33)y′
i (s) = (−1)i+1 det

((
∂H(y(s))

∂y

)
−i

)
for all i, where the notation (·)−i is used to indicate that the ith column is removed
from the Jacobian ∂H(y(s))

∂y
[see Zangwill and Garcia (1981, pp. 27–28) for the proof].

Note that Equation (33) reduces to Equations (30) and (31) if x is a scalar instead of
a vector. Given an initial condition the basic differential equations (33) can be solved
using numerical methods.

A few comments are in order. First, if the Jacobian has less than full rank, then the
determinants of all its submatrices are zero. Thus, y′

i (s) = 0 for all i and the homotopy
algorithm stalls. Indeed, a central condition in the mathematical literature on homotopy
methods is that the Jacobian has full rank [see, e.g., Zangwill and Garcia (1981)]. If
so, the homotopy is called regular and the algorithm is guaranteed to trace out a path.27

Unfortunately, proving that the Jacobian has full rank is frequently difficult when the
goal is to follow an economically meaningful parameter such as the rate of depreciation
δ or the discount factor β.

Second, H(·) must be continuously differentiable. This means that we need the
distribution of scrap values F(·) and setup costs Fe(·) to be differentiable. Also the
investment decisions which, since zero investment is a possible outcome, are typically
characterized by Kuhn–Tucker conditions should be reformulated as continuously dif-
ferentiable equations [Judd, Kübler and Schmedders (2003) show how to do this].28

Finally we note that the homotopy algorithm is computationally demanding. Com-
puting the Jacobian is a major burden. Numeric derivatives are slow to compute and
though analytic derivatives speed up the computations, deriving and coding them by
hand is time consuming and error prone. One alternative is to use automatic differenti-
ation software that takes a procedure for computing a function as input and produces a
procedure for computing its derivatives as output. However even with analytic deriva-
tives the computational demands of homotopy algorithm that have been used to date are
such they have been restricted to relatively small systems of non-linear equations. On

27 The mathematical literature calls this the continuation problem and has developed methods for dealing
with the bifurcations that may arise if the Jacobian has less than full rank [see, e.g., Kalaba and Tesfatsion
(1991)].
28 The mathematical literature has developed piecewise linear homotopy methods that can handle problems
with discontinuous equations [see, e.g., Eaves (1972) and Judd (1998, ch. 5)].
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the other hand, there has been very little exploration of methods which might reduce its
computational burden. Some initial experience suggests that exploiting sparsity patterns
in the Jacobian yields substantial gains.

Software A number of software packages implement homotopy methods. Besanko et
al.’s (2004) programs are based on Hompack [Watson, Billups and Morgan (1987)],
which is written in Fortran 77, and are available upon request. Hompack 90 is able to
exploit sparsity patterns and is described in Watson et al. (1997). There are numerous
software packages available for automatic differentiation, e.g., ADIFOR for Fortran 77
and ADIC for C.

Summary The problem of finding all solutions to a system of non-linear equations is
largely unresolved in the mathematics literature. Indeed, as already noted, there is no
guarantee that the homotopy algorithm finds all the equilibria of our dynamic stochastic
game. In some cases it is possible to exploit the structure of the system of equations.
For example, the system of equations that characterizes the set of Nash equilibria in
static games is polynomial [see, e.g., McKelvey and McLennan (1996)]. For polynomial
systems, in turn, there are methods that are guaranteed to find all solutions. These all-
solutions homotopies have been implemented in the freely-available software package
Gambit [McKelvey, McLennan and Turocy (2006)] and used by Bajari, Hong and Ryan
(2004) in the context of static games and by Judd and Schmedders (2004) to construct
a computational uniqueness proof for dynamic games in which movements through the
state space are unidirectional. Jia (2006) imposes supermodularity conditions on a two-
stage game and uses the fact that in supermodular games there is a best and a worst
equilibrium to delineate the set of subgame perfect equilibria.

Finally, there are methods for computing the entire set of subgame perfect equilib-
ria in repeated games [see, e.g., Judd, Yeltekin and Conklin (2003)]. Recently, these
methods have been extended to game with state variables [Conklin and Judd (1996),
Judd and Yeltekin (2001)]. Unfortunately, however, none of the available methods is
anywhere near capable of handling the large games that are typical for applications of
EP’s framework.

7. Applications and extensions

There is a large and active literature using the EP framework in IO, and, most recently, it
has also been used in other fields such as international trade [Erdem and Tybout (2003)]
and finance [Goettler, Parlour and Rajan (2005), Kadyrzhanova (2006)]. As Table 30.4
shows, there are too many applications to discuss all of them in detail. Instead we focus
on some of the larger themes in this literature. They allow us to both (i) illustrate how the
framework has been extended by various authors to approximate alternative institutional
structures, and (ii) point out some of the problems that need to be overcome before the
framework can be applied to particular topics of obvious interest.
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Table 30.4
Applications of EP’s framework

Application Paper(s)

Advertising Doraszelski and Markovich (2006), Dube, Hitsch and Manchanda (2005)

Capacity accumulation Besanko and Doraszelski (2004), Ryan (2005), Beresteanu and Ellickson (2005)

Collusion Fershtman and Pakes (2000, 2005), de Roos (2004)

Competitive convergence Langohr (2003)

Consumer learning Ching (2003)

Firm size and growth Laincz and Rodrigues (2004)

Learning-by-doing Benkard (2004), Besanko et al. (2004)

Mergers Berry and Pakes (1993), Gowrisankaran (1999), Chen (2004)

Network effects Jenkins et al. (2004), Markovich (2004), Markovich and Moenius (2005), Chen,
Doraszelski and Harrington (2004)

Productivity growth Laincz (2005)

R&D Gowrisankaran and Town (1997), Auerswald (2001), Song (2002), Judd,
Schmedders and Yeltekin (2002), Fershtman and Markovich (2006)

Technology adoption Schivardi and Schneider (2005)

International trade Erdem and Tybout (2003)

Finance Goettler, Parlour and Rajan (2005), Kadyrzhanova (2006)

We begin with a brief review of the empirical work using the EP framework. This
includes a small literature on testing the EP model against known alternatives, and a
small but growing literature on using the framework to analyze the impacts of different
policy or environmental changes. Notably absent from this subsection is a review of the
recent literature which uses the EP framework to structure estimation algorithms. The
relevant literature here includes Aguirregabiria and Mira (2007), Bajari, Benkard and
Levin (2006), Pakes, Ostrovsky and Berry (2006), Pesendorfer and Schmidt-Dengler
(2003) and has been recently reviewed in Ackerberg et al. (2005).

We then turn to applied theory papers which use the framework. Our starting point
are models of capacity and advertising dynamics. These models preserve the traditional
“static–dynamic” breakdown we used to introduce the framework in prior sections.
They illustrate nicely just how rich the industry dynamics generated by the framework
can be even in this “textbook” setting. This fact is accentuated by comparing the results
using the EP framework to other – typically analytically tractable – dynamic models.
Next we discuss models of mergers. The EP framework in its basic form is well suited to
analyze the effect of a “one-time” exogenously specified merger on the future evolution
of an industry. The papers which do this analysis emphasize the importance of explic-
itly modeling how a merger affects firms’ incentives for investment, entry, and exit. By
taking into account how these incentives evolve after a merger has taken place, these pa-
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pers often arrive at welfare implications that are quite different from those obtained in
simpler models. There has also been some work on endogenizing merger activity. This
requires a much richer stage game to be played in each period; firms not only choose
quantities/prices but also whether and with whom to merge.

Next we turn to models of learning-by-doing, network effects, and collusion. These
types of models depart from the traditional “static–dynamic” breakdown in teaching IO,
i.e. in these models the price or quantity that a firm sets in the product market has a direct
effect on the dynamics of the industry. Consequently, the profit function can no longer
be computed “off line”. After providing a brief review of how to modify the framework
to allow for this possibility we review some of the results from this literature. Again the
emphasis is on dynamic effects that have not been captured by simpler models. As we
shall see they often shed new light on both policy issues and our understanding of the
implications of different environments.

7.1. Empirics

First a brief note on testing. Pakes and Ericson (1998) show that the Markov na-
ture of the equilibrium process distinguishes the EP model from industry equilibrium
models based on learning about a time-invariant parameter such as the dynamic equi-
librium model of Jovanovic (1982). They formalize this distinction by developing a
non-parametric test, versions of which have been used to determine the appropriateness
of the different types of models for different data sets [see, e.g., Bhattacharjee (2005),
Klette and Raknerud (2002), and Abbring and Campbell (2003)].

The test assumes there is an observable variable which orders the ωi of active firms
(in their application the variable used was sales), and follows the values of this variable
in cohorts of surviving firms over time. If the EP framework is appropriate, the depen-
dence of the conditional distribution of current size, conditional on a few past sizes,
on the initial size should disappear as we increase the age of the firm (formally a φ-
mixing condition is satisfied). If the learning model is appropriate that dependence never
disappears. Interestingly Pakes and Ericson (1998) find a sharp distinction between
manufacturing and retail firms in their Wisconsin data set; it is clear that manufacturing
firms satisfy the φ-mixing condition while retail firms do not. That is at least in their
data the EP model seems more appropriate for manufacturing firms while a model based
on learning about time-invariant parameters seems more appropriate for retail trade.

In addition, a number of papers apply variants of the EP framework to analyze pol-
icy or environmental changes in a variety of industries. In the first effort along these
lines, Gowrisankaran and Town (1997) present a dynamic model of the hospital industry
in which non-profit and for-profit hospitals coexist and compete. They are differenti-
ated by their objective functions, investment technologies, and taxation rates. In their
model patients, who differ by income and type of insurance coverage, chose admission
to their preferred hospital. Hospitals choose investment, entry, exit, and pricing strate-
gies. Gowrisankaran and Town (1997) first estimate the parameters of the model and
then use it to examine the effects of changes in the Medicare reimbursement system,
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universal health-care coverage, and taxation of non-profits. The results were striking;
the effect of the policy changes on entry, investment and exit policies often implied that
the original goals of the policy changes would not only not be achieved, but in some
cases the dynamic implications would quickly result in an environment that was worse
than the original situation with respect to the stated policy goal.

Ryan (2005) evaluates the welfare costs of the 1990 Amendments to the Clean Air
Act on the U.S. Portland cement industry. The typical cost analysis of an environmen-
tal regulation consists of an engineering estimate of the compliance costs. In industries
where fixed costs are an important determinant of market structure this static analysis
ignores the dynamic effects of the regulation on entry, investment, and market power.
Ryan (2005) accounts for these effects through a dynamic model of oligopoly in the
tradition of EP. He recovers the entire cost structure of the industry, including the dis-
tribution of sunk entry costs and adjustment costs of investment, and finds that the
Amendments have significantly increased the sunk cost of entry. Simulating the wel-
fare effects of the Amendments, he shows that a static analysis misses the welfare
penalty on consumers, and obtains the wrong sign on the welfare effects on incumbent
firms.

The EP framework has also been applied to particular industries in order to shed light
on the institutional arrangements in those industries. Song (2002) analyzes a research
joint venture (RJV) led by SEMATECH in the semiconductor industry using the dy-
namic model of oligopoly. The paper first estimates firms’ states, using product level
data, and solves for the equilibrium research expenditures. Results show that a firm’s
research expenditure in SEMATECH is one-fifth of what it would be in competitive
research. Lower research expenditures result in higher net profits in RJVs, although
variable profits are similar in both regimes. RJVs are also more likely to generate
higher consumer surplus than competitive research. The paper also shows that firms
react differently for the same changes in the product market, depending on whether
they cooperate or compete in research.

Beresteanu and Ellickson (2005) examine competition between supermarket chains
using a dynamic model of strategic investment. Employing an eight-year panel dataset
of store level observations that includes every supermarket operating in the United
States, they develop and estimate a fully dynamic model of chain level competition.
The estimated parameters of the structural model are then used to evaluate the compet-
itive impact from the introduction of superstores.

There are a number of other papers which use variants of the framework to analyze
particular issues in different industries [Benkard (2004), Ching (2003), de Roos (2004),
Dube, Hitsch and Manchanda (2005), Jenkins et al. (2004)], some of which we will
return to after we introduce more complex variants of the EP framework. Overall these
papers have shown both that (i) the framework is at least reasonably well suited for
applied dynamic analysis in a variety of industries, and (ii) that the dynamic effects
of policy changes should not be ignored and often outweigh (sometimes reversing) the
static effects.
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7.2. Capacity and advertising dynamics

Empirical evidence suggests that there are substantial and persistent differences in the
sizes of firms in most industries. For example, Mueller (1986) found that in 44 percent
of 350 U.S. manufacturing industries, the identity of the industry leader remained un-
changed over a twenty-two year period, and that the correlation between market shares
over this period was 0.66 [see also Gort (1963) among others].

Asymmetric industry structures can, of course, arise as the outcome of a game in
which firms differ in their economic fundamentals (e.g., cost structures) or their strategic
positions at the outset of the game (e.g., first versus later mover). However, this begs the
question: How do such differences in initial conditions arise in the first place? A num-
ber of papers has shown that asymmetric industry structures can arise as the outcome of
a capacity accumulation game played by ex ante identical firms [e.g., Saloner (1987),
Maggi (1996), and Reynolds and Wilson (2000)]. Though valuable in highlighting that
substantial differences in firm size can arise endogenously for strategic reasons, these
models are less satisfactory in explaining the persistence of these differences over time
which is highlighted by the evidence. This is because these papers consider an unchang-
ing competitive environment. Once an equilibrium has been reached, nothing further
happens to upset the positions of firms. That is, asymmetric industry structures persist
in these models by default. Ideally, however, one would like to understand whether there
are circumstances under which asymmetric industry structures persist in a competitive
environment that changes over time, for example, because of firm-specific shocks. The
competitive environment can also change due to feedback effects. For example, if large
firms invest more aggressively than small firms, then a small initial asymmetry may
become larger over time, but it may vanish otherwise. In general, one would expect
feedback effects to play a role whenever the time horizon under consideration is long
enough to allow firms to interact repeatedly.

For these reasons, an important question is when substantial and persistent size dif-
ferences can arise endogenously in equilibrium in a market in which ex ante identical
firms interact repeatedly and are subject to firm-specific shocks that continuously alter
their positions. To address this question, Besanko and Doraszelski (2004) use the EP
framework to track the evolution of an oligopolistic industry. Consistent with the em-
pirical evidence, their dynamic model of capacity accumulation is able to explain the
substantial and persistent differences in the sizes of firms.

Besanko and Doraszelski (2004) demonstrate that industry dynamics depend criti-
cally on the mode of product market competition and on the degree to which investment
is reversible, as measured by the rate of depreciation. Under quantity competition, each
firm accumulates enough capacity to supply the Cournot quantities, leading to an indus-
try structure of equal-sized firms independent of whether investment is irreversible (zero
depreciation) or reversible (positive depreciation). With positive depreciation, firms tend
to hold idle capacity out of a precautionary motive. By contrast, under price competition,
there are forces that propel the industry towards asymmetric structures. In particular, if
investment is reversible, then the industry evolves towards an outcome with one dom-
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inant firm and one small firm. Industry dynamics in this latter case resemble a rather
brutal preemption race. During this race, firms invest heavily as long as they are of
equal size even though this leads to substantial industry-wide overcapacity. Once one of
the firms manages to pull slightly ahead in this race, however, the smaller firm “gives
up”, thereby propelling the larger firm eventually into a position of dominance.

Their paper sheds new light on the relationship between preemption and reversibility.
Besanko and Doraszelski (2004) show that, under price competition, the preemption
race between contending firms becomes more brutal as investment becomes more re-
versible. This stands in marked contrast to the usual intuition that depreciation reduces
the commitment power of capacity and that capacity accumulation can therefore only
lead to a temporary advantage. The key insight underlying their result is that with re-
versible investment the consequences to a firm of falling behind its rival are not fatal:
the firm can allow its capacity to depreciate and assume the more profitable posture of
a “puppy dog”. The higher is the rate of depreciation, the easier it is for a lagging firm
to “disengage” from the preemption race and hence the more attractive it is for firms to
enter in such a race in the first place.

Laincz and Rodrigues (2004) further pursue the idea of using the EP framework to
explain stylized facts about industry structure and dynamics. To this end, they develop a
dynamic model of the firm size distribution. Their model allows for continually falling
marginal costs through process R&D [as in Laincz (2005)]. Empirical studies of the
firm size distribution often compare the moments to a log-normal distribution as im-
plied by Gibrat’s Law and note important deviations. Thus, the first, and basic questions
they ask are how well does the dynamic industry model reproduce Gibrat’s Law and
how well does it match the deviations uncovered in the literature. They show that the
model reproduces these results when testing the simulated output using the techniques
of the empirical literature. They then use the model to study how structural parame-
ters affect the firm size distribution. They find that, among other things, fixed and sunk
costs increase both the mean and variance of the firm size distribution while generally
decreasing the skewness and kurtosis. The rate of growth in an industry also raises the
mean and variance, but has non-monotonic effects on the higher moments.

Turning from capacity to advertising dynamics, it is worth noting that during 2003
close to 250 billion dollar was spent on advertising in the U.S., well above 2% of
GDP. Practitioners know very well the value of advertising to achieving their long-
term market share and profitability goals and presume that advertising is capable of
giving them a sustainable competitive advantage over their rivals. The existing dynamic
models of advertising competition, however, suggest quite the opposite. In these models
there is a globally stable symmetric steady state [see, e.g., Friedman (1983), Fershtman
(1984), Chintagunta (1993), Cellini and Lambertini (2003)]. Consequently, any differ-
ences among firms are bound to vanish over time, and there is no room for a sustainable
competitive advantage, not even if firms enter the market one by one and thus differ
in their strategic positions at the outset of the game [Fershtman, Mahajan and Muller
(1990)].
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Doraszelski and Markovich (2006) attempt to reconcile theory and observation by
showing that advertising can indeed have a lasting effect on the structure of an industry.
To this end, they propose a dynamic model of advertising competition based on the EP
framework to track the evolution of an industry. Within this dynamic framework, they
study two different models of advertising: In the first model, advertising influences the
goodwill consumers extend towards a firm (“goodwill advertising”), whereas in the sec-
ond model it influences the share of consumers who are aware of the firm (“awareness
advertising”). They show that asymmetries may arise and persist under goodwill as well
as awareness advertising. The basis for a strategic advantage, however, differs greatly
in the two models of advertising.

Under goodwill advertising, the size of the market and the cost of advertising are
key determinants of industry structure and dynamics. In particular, goodwill advertising
leads to an extremely asymmetric industry structure with a large and a small firm if the
market is small or if advertising is expensive. Because the marginal benefit of adver-
tising is small relative to its cost, a small firm has only a weak incentive to advertise
when competing against a large firm and, in fact, may choose not to advertise at all. If
the market is large or if advertising is cheap, on the other hand, even a small firm has a
fairly strong incentive to advertise. In this case we obtain a symmetric industry structure
with two large firms.

In contrast to the cost/benefit considerations that give rise to a strategic advantage un-
der goodwill advertising, whether or not asymmetries arise and persist under awareness
advertising depends on the intensity of product market competition. If competition is
soft, the industry evolves towards a symmetric structure, but it evolves towards an asym-
metric structure if competition is fierce. Industry dynamics in this latter case resemble a
preemption race. In this race, both firms start off advertising heavily and continue to do
so as long as they are neck-and-neck. Once one firm gains a slight edge over its com-
petitor, however, there is a marked change in advertising activity. While the smaller firm
scales back the larger firm ratchets up its advertising, thus eventually securing itself a
position of dominance. The ensuing asymmetric industry structure persists because it is
in the self-interest of the smaller firm to stay behind. In fact, the nature of product mar-
ket competition is such that once the smaller firm tries to grow, the larger firm responds
aggressively by triggering a “price war”, thereby pushing prices and hence profits down.
This gives the smaller firm an overwhelming incentive to remain inconspicuous. In sum,
the central idea of their model of awareness advertising is that “more is less”. This is
a rationale for persistent asymmetries that has mostly been ignored in the literature on
dynamic games.

The benefits from improving upon earlier work are most obvious in comparison to
linear–quadratic games [Friedman (1983), Cellini and Lambertini (2003)]. Since the
law of motion in such a game is given by a system of linear difference (or differen-
tial) equation, the dynamics are generically either explosive and thus inconsistent with
equilibrium or there is a globally stable symmetric steady state. Hence, the very nature
of a linear–quadratic game goes against the notion of a sustainable competitive advan-
tage. Taken together, Doraszelski and Markovich’s (2006) departures from earlier work
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lead to a model of advertising competition that exhibits much richer dynamics. On the
other hand, they force them to leave analytically tractable modeling frameworks such
as linear–quadratic games behind.

Dube, Hitsch and Manchanda (2005) use the EP framework to study a higher-
frequency feature of firms’ advertising policies in more detail. More specifically, they
develop a model of dynamic advertising competition in order to explain “pulsing”,
a widely observed phenomenon in many consumer-goods industries whereby firms
systematically switch advertising on and off at a high-frequency. Hence, we observe
periods of zero and non-zero advertising, as opposed to a steady level of positive adver-
tising. Using an estimated demand system for the frozen entree product category, they
verify whether the use of pulsing can be justified as an equilibrium advertising practice.
They find evidence for a threshold effect, which is qualitatively similar to the S-shaped
advertising response that the theoretical literature has put forth as an explanation for
pulsing. Their estimates imply that firms should indeed pulse in equilibrium. Predicted
advertising in equilibrium is higher, on average, than observed advertising. On average,
the optimal advertising policies yield a moderate profit improvement over the profits
under observed advertising.

7.3. Mergers

Almost all of the formal models of merger activity condition on the cost, qualities, and
variety of products sold in the market. These models hold the distribution of character-
istics of the products being marketed (as well as the nature of competition) fixed, and
analyze the impact of the ownership change on producer and consumer surplus. The pro-
ducer surplus analysis provides a vehicle for analyzing the incentives to merge, while
either the consumer surplus or the sum of the two provides the vehicle for analyzing
whether the merger might be socially beneficial.

As noted in Stigler’s (1968) investigation of the U.S. Steel mergers, the results from
such a “static” analysis of mergers can easily be overturned by simple dynamic con-
siderations (his discussion allowed for adjustment costs in an analysis of mergers in a
homogeneous homogeneous goods industry). The first attempts to build a model to an-
alyze the dynamic effects of mergers are Berry and Pakes (1993) and Cheong and Judd
(2006). Both papers analyze the impact of a “one-time” exogenously specified merger in
a dynamic model which allows for investment but does not allow for any further merg-
ers. These papers show that mergers can be beneficial to both the firms merging and to
society, even if the profits of the merging firms and consumer surplus falls at the time of
the merger. The predominant reason is that there is less of an incentive to invest in the
merged industry, and the Markov perfect equilibrium generates more investment than
a social planner would [see Mankiw and Whinston (1986) for the intuition underlying
these arguments].

Chen (2004) extends the dynamic model of capacity accumulation due to Besanko
and Doraszelski (2004) in which firms produce nearly homogeneous products and com-
pete in prices to investigates the price and welfare effects of mergers. In contrast to the
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results stressed in the results cited in the last paragraph, Chen (2004) finds that merg-
ers reduce welfare. This negative effect results from the fact that certain firms in the
postmerger industry optimally choose to let their capacities shrink, resulting in higher
prices and lower consumer surplus. This divergence in results emphasizes both just how
rich a set of outcomes the framework can generate, and the importance of program-
ming an appropriate institutional structure into the model before coming to any policy
conclusions.

To be more realistic a model which investigated the dynamic impacts of mergers
would want to allow mergers to arise endogenously, and not just investigate the im-
pacts of a “one-time” exogenously specified merger. In particular one might think that
a merger by one firm might lead to further mergers of competitors, as it has often been
noted that there tend to be “merger waves”. There are many unsolved problems here,
not least among them being the diversity of views on the factors motivating merger
activity in different industries. In addition to specifying the possible sources of gains
from mergers, a merger model must also specify a market mechanism for determining
which among the possible profitable mergers at any point of time are in fact consum-
mated.

One such mechanism is provided in Gowrisankaran (1999). He takes the capacity-
constrained quantity-setting game with homogeneous goods and adds to it a merger
game. The merger game occurs at the beginning of each period and proceeds in the
following sequential manner. The largest firm is allowed to choose a merger partner first.
All other firms present the largest firm with a “take-it-or-leave-it” price at which they
are willing to be bought. Information is symmetric except that the largest firm draws a
“synergy” value for each merger which is known only to it; i.e. the synergy value for
a given firm is not known to any of the firms that might be acquired. The largest firm
chooses to merge with the firm which generates the highest net merger value provided
that value is positive. The net merger value is the expected discounted value of future
net cash flow if a merger would take place net of the price of the acquisition and what
the value of the firm would be if the merger did not take place. If a merger takes place
the process restarts (there are new take-it-or-leave-it offers, and new synergy values),
and the (new) largest firm can choose another merger partner. When the largest firm
chooses not to merge further, the second largest firm gets to choose a merger partner
in the same way. This process continues until the smallest active firm chooses not to
merge further. At that point production, investment, and then exit followed by entry
and investment decisions are made. All offers and actions are made to maximize the
expected discounted value of future net cash flows given the agents’ information sets,
and the equilibrium is Markov perfect.

Perhaps the most striking part of this analysis is that it can be done. Given the quan-
titative magnitude of the merger phenomena in recent years and the extent that it can be
impacted by policy, any step in developing a usable models of mergers is welcome. Still,
it is clear that we are only at the beginnings of developing realistic dynamic models that
allow for mergers; a lot of work remains to be done.
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7.4. Learning-by-doing and network effects

In the simple special case of the framework described above the distribution of the
next period’s state, conditional on today’s states and firms’ investment, entry, and exit
decisions, is independent of the prices or quantities that the firms set in the product
market. This is the assumption which allows us to compute the profit function “off line”
and to study static equilibrium without considering the impact of pricing or quantity
decisions on future profits. The assumption is, however, inappropriate whenever either
(i) future cost, (ii) future demand, or (iii) the choice of equilibrium prices or quantities in
future periods, depends on the prices or the quantities set in the current period. Relevant
cases when this assumption is inappropriate include models with learning-by-doing,
adjustment costs, durable goods, experience goods, collusion, and network effects.

In all these cases the profit function can no longer be computed “off line” and fed
into the algorithm for computing the equilibrium of the dynamic stochastic game. The
reason is that the choice rule for prices or quantities will now have to account for the
impact of the choice on future cash flows as well as on current profits. As a result we
cannot solve for prices or quantities without knowing the value function, and this makes
for a more difficult computational problem. The collusion case has a slightly different
structure then the others and we discuss it in a separate section below. Here we consider
only the cases where the price or quantity set today have an independent effect on future
demand or cost conditions.

The modification to the first-order condition needed to accommodate these cases dif-
fers depending on whether the firm’s control is price or quantity. To see this consider a
setting with learning-by-doing. Let ωi be the stock of experience or know-how of firm
i that determines its cost of production. The law of motion for firm i’s state is

ω′
i = ωi + νi − ηi,

where the random variable νi indicates additions to the stock of experience and the
random variable ηi represents firm-specific depreciation of experience (also called orga-
nizational forgetting in the literature). The distribution of νi is stochastically increasing
in the sales qi of firm i.

In games of quantity competition a firm can change its control without directly affect-
ing the quantities, and therefore state-to-state transitions, of its competitors. Then the
Nash first-order condition only involves the derivative of the firm’s current profit and
transition probabilities for its own state with respect to the control. In contrast, in games
of price competition any change in the firm’s control induces a change in the quantities,
and therefore in the probabilities of the state-to-state transitions, of the firm’s competi-
tors. This adds further derivatives to the Nash first-order condition.29 Benkard (2004)
analyzes a learning-by-doing model with quantity competition and since his work has

29 This also happens when the control is a bid in a repeated auction with capacity constraints, see Jofre-Bonet
and Pesendorfer (2003).
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the added realism of a model built up from estimated parameters, we begin with an out-
line of it. Later we discuss the model of learning-by-doing and organizational forgetting
of Besanko et al. (2004) as an example of a price setting game.

Benkard’s (2004) goal is to analyze competition in the market for wide bodied com-
mercial aircraft. Benkard adds estimates of demand parameters to the cost functions he
estimates in Benkard (2000), and then computes and analyzes a model of dynamic quan-
tity competition among producers which is a reasonably realistic approximation to the
competition that occurred in the commercial aircraft market at the time the Lockheed
Tristar was being introduced. Benkard (2004) finds that the effect of current quantity
on future costs, and through future costs on its future competitive status, will induce
the firm to produce large quantities in the early production years (the experience curve
is steep early on in the production process). In fact production in the early years is
pushed so far that price falls well below marginal cost in those years. This implication
is clearly borne out by the price and cost data, and is inconsistent with a static quantity
setting model. Benkard (2004) then proceeds to an analysis of the producer and con-
sumer surplus generated by the outcomes of the interactions in this market, and a series
of counterfactuals allow him to analyze what would have been likely to happen if we
had imposed other institutional constraints.

As pointed out by Benkard (2004), organizational forgetting, i.e., depreciation of ex-
perience, is needed to explain the dynamics in the market for wide-bodied airframes
in the 1970s and 1980s. It is often said that learning-by-doing promotes market domi-
nance because it gives a more experienced firm the ability to profitably underprice its
less experienced rival. However if learning-by-doing can be “undone” by organizational
forgetting, then there is a question of whether organizational forgetting can reverse the
market dominance effects of learning-by-doing. Besanko et al. (2004) find that this is
not necessarily the case; on the contrary, over a wide range of parameterizations, organi-
zational forgetting tends to make firms more instead of less aggressive. This aggressive
pricing behavior, in turn, puts the industry on a path towards market dominance. They
extend Cabral and Riordan’s (1994) model of learning-by-doing by allowing for orga-
nizational forgetting. In the absence of organizational forgetting, the price that a firm
sets reflects two goals. First, by winning a sale, the firm moves down its learning curve.
Second, the firm prevents its rival from moving down its learning curve. Organizational
forgetting accentuates these possibilities; by winning a sale, a firm makes itself less vul-
nerable to future losses from organizational forgetting and, at the same time, it makes
its rival more vulnerable. This creates strong incentives to cut prices.

Incorporating organizational forgetting in the model as suggested by the empirical
studies of Argote, Beckman and Epple (1990), Darr, Argote and Epple (1995), Benkard
(2000), and Thompson (2003) into the Cabral and Riordan (1994) model of learning-
by-doing makes the model much less analytically tractable. As a result Besanko et al.
(2004) move from the elegance of the analytic results in Cabral and Riordan (1994) to
numerical analysis. On the other hand, adding organizational forgetting to a model of
learning-by-doing leads to a rich array of pricing behaviors and industry dynamics that
the existing literature never considered.
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In particular, Besanko et al. (2004) show that the model with both learning-by-doing
and organizational forgetting can give rise to multiple equilibria, whereas a model with
learning-by-doing alone cannot. They show that with their parameterization these equi-
libria range from “peaceful coexistence” to “trench warfare”. If the inflow of know-how
into the industry due to learning-by-doing is substantially smaller than the outflow of
know-how due to organizational forgetting, then it is virtually impossible that both
firms reach the bottom of their learning curves. Conversely, if the inflow is substan-
tially greater than the outflow, then it is virtually inevitable that they do. In both cases,
the primitives of the model tie down the equilibrium. This is no longer the case if the
inflow roughly balances the outflow, and the stage is set for multiple equilibria. If firms
believe that they cannot profitably coexist at the bottom of their learning curves and
that instead one firm comes to dominate the market, then both firms cut their prices in
the hope of acquiring a competitive advantage early on and maintaining it throughout.
This aggressive pricing behavior, in turn, leads to market dominance. However, if firms
believe that they can profitably coexist, then neither firm cuts its price, thereby ensuring
that the anticipated symmetric industry structure actually emerges. Consequently, in ad-
dition to the degree of organizational forgetting, the equilibrium by itself is an important
determinant of pricing behavior and industry dynamics.

Just as learning-by-doing can lead to decreasing cost over time, network effects can
lead to increasing utility over time. Markovich (2004) and Markovich and Moenius
(2005) model the dynamics caused by the interactions between hardware and software
choices; that is by “indirect” network effects. Consumers make a hardware choice that
lasts two periods. Software is designed to run on one, and only one, of the two types of
hardware. Software firms must commit to one of the two types of hardware when they
enter, and then can invest to improve the quality of their product, or exit, just as in the
core version of our model. The demand for a given software product depends not only
on the qualities of software products available for each of the two hardware types, but
also on the number of consumers who have purchased the different types of hardware
in the past. Thus consumer demand for hardware products depends on beliefs about the
likelihood of future software products available for each hardware type, while the entry
exit and investment decisions of software firm’s depends on their beliefs on the future
hardware purchases of consumers.

Markovich (2004) shows that with her parameterization excess inertia does not occur.
A platform would be the standard in the market only if it is better than the competing
platforms. Furthermore, if the industry’s competitors (the outside alternative) are not
progressing too quickly the equilibrium is one where both types of hardware are pro-
duced (the “variety” equilibrium), while if the competitors to the industry are growing
quickly we see an equilibrium with only a single type of hardware produced (the “stan-
dardization” equilibrium). Markovich and Moenius (2005) find that network effects tie
together the performance of firms using the same platform. This is driven by two effects:
a successful competitor increases its platform’s market share, and that in turn increases
the incentives to invest in quality for all firms on this platform. So a firm may even enjoy
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a windfall increase in its market value resulting when a competitor on the same platform
has a success.

Jenkins et al. (2004) apply a dynamic model with network externalities to a stylized
description of the browser war between Netscape and Microsoft [see also Hall, Royer
and Van Audenrode (2003)]. They show that network effects may be a substantial bar-
rier to entry, giving both entrants and incumbents powerful strategic incentives to tip the
market. An incumbent that dominates a market through share and scope has an incen-
tive to maintain share as a barrier that makes entry costly and risky. An entrant has an
incentive to grab market share to overcome the incumbent’s advantage. In the browser
war between Netscape and Microsoft, network effects appear to have sharpened strate-
gic incentives and driven a “no-holds-barred” battle for market share. Counterfactual
experiments that compare “as is” market trajectories with “but for” trajectories suggest
Microsoft’s “bad acts” may have been decisive in tipping the market.

7.5. Collusion

Most of the theoretical work on collusion and price wars assumes a fixed or exogenously
changing environment. Though these assumptions help clarify what determines when a
collusive agreement can be enforced and hence when it breaks down [see, in particular,
the classic work of Green and Porter (1984) and Abreu, Pearce and Stacchetti (1986)],
they limit the investigation of the implications of collusion to its impact on prices ig-
noring the (possibly equally important) effects of collusion on the costs, qualities, and
varieties of the products marketed.

If we are willing to give up on the elegance of analytic results and rely instead on
numerical analysis, it is not difficult to analyze collusive models that allow for het-
erogeneity among firms who invest to develop their products, and can enter and exit.
Fershtman and Pakes (2000) assume that firms either collude to set prices or set prices
as in a static Nash pricing equilibrium. Collusive prices and profits are determined by
the outcomes of a Nash bargaining game in which the threat value is the profits from
the static, Nash in prices, equilibrium. The choice of which price vector to play de-
pends on whether any incumbent has deviated from collusive prices in the past, and
on whether the punishments currently available are sufficient to insure no firm has an
incentive to deviate in the current period. If there is an incumbent who has deviated,
the static Nash in price solution is played as long as that incumbent remains active. As
in much of the repeated game literature no incumbent ever deviates.30 However there
are tuples of states for which the punishment of reverting to non-collusive prices is not
sufficient to support collusion, and this generates “price wars” (reversions to a Nash
pricing equilibrium).

Fershtman and Pakes (2000) find that collusion is hard to sustain when either one
of the firms does not keep up with the advances of its competitors, or a “low quality”

30 See Green and Porter (1984) and Abreu, Pearce and Stacchetti (1986) and Judd, Yeltekin and Conklin
(2003) for a method to compute the set of subgame perfect equilibria in repeated games.
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entrant enters. In either case there will be an active firm that is quite likely to exit
in the near future. Not only is it hard to punish a firm who is likely to exit after it
deviates, but if one of the competitors is near an exit state the other incumbent(s) has
an incentive to price predatorily (that is to deviate themselves) in order to hasten that
exit.

Formally the difference between the Fershtman and Pakes (2000) model and the
original EP framework is that they introduce a second state variable for each firm
and let price choices depend on it. The second state variable, borrowed from the re-
peated game literature, is an indicator function which is one if the given firm has
ever deviated from the collusive agreement in the past.31 The Bellman equation for
an incumbent firm is then more complicated because now at each state vector for
which no one has deviated in the past, we must check to see that no one has an in-
centive to deviate in the current period. If either someone has deviated in the past,
or someone has an incentive to deviate in the current period, then static Nash pric-
ing ensues. If neither of these conditions are satisfied, then the collusive prices are
played. With this modification to the Bellman equation one can compute equilib-
rium values iteratively, using techniques analogous to those described in Section 4.1.
Note that this implies that policies are computed for values of the state vector in
which each incumbent firm has deviated in the past, as well as for cases when none
have ever deviated. Since, in the equilibria that Fershtman and Pakes (2000) com-
pute, no firm ever deviates, this implies that they need to compute values and poli-
cies which should never actually be observed (states that are “off the equilibrium
path”).

The results illustrate the potential importance of dynamic considerations in evalu-
ating the benefits and costs of collusion. In particular for the parameter values they
chose consumers prefer the collusive equilibria to the equilibria with no collusion; i.e.
the greater quality and variety of goods that are marketed in the collusive equilibria
more than compensates consumers for the higher prices they have to pay when there is
collusion.

As Fershtman and Pakes (2000) note there are many ways to model collusion in a
numerically tractable way and the choice among the possibilities should probably be
made with a particular industry in mind. de Roos (2004) computes a model designed
to match the available data on the lysine cartel that operated in the 1990s. In his model
firms’ profits in the collusive regime are based on their market shares at the time the
collusion agreement is struck and there is a punishment regime in addition to a non-
cooperative and a collusive regime.

31 This had been used previously to allow for collusion in Markov perfect settings, see Haurie and Tolwinski
(1986), Tolwinski, Haurie and Leitmann (1986), and Reynolds (1991). It is sometimes also possible to con-
struct collusive equilibria without adding another state variable, see Fudenberg and Tirole (1983) and Nocke
(in press).



Ch. 30: A Framework for Applied Dynamic Analysis in IO 1957

8. Topics for further study

There are a number of topics of potential importance to the successful use of the EP
framework which have not yet been studied. Some of them involve a more in depth
examination of the basic behavioral assumptions used in that framework. Others involve
extensions to the framework which would be required to apply it to settings of obvious
empirical importance. We now briefly outline four among those topics that we think
may well be particularly important.

Entry There has been a proliferation of entry models in which the potential entrants
are short lived (i.e. entrants either enter this period or disappear, but cannot delay entry
until the next period). EP assume that there is a finite number of potential entrants
each period whose entry decisions are made sequentially. Letting n be the number of
currently active firms, Doraszelski and Satterthwaite (2003) assume that every period
there are n̄ − n potential entrants that make simultaneous decisions on whether to enter.
Pakes, Ostrovsky and Berry (2006) assume that the number of potential entrants is a
random draw from a known distribution, and the potential entrants who do appear make
their entry decisions simultaneously. As noted part of the reason for this proliferation is
an absence of empirical facts on entry.

In any given applied setting it may be preferable to tie the number of potential entrants
to particular exogenous state variables. As long as the exogenous state variable(s) evolve
as a Markov process, this just requires us to add a state variable(s) to the model. It is also
relatively easy to allow potential entrants to delay entry provided the number of active
potential entrants in each period are observed by the other agents in the industry and the
next period entry costs of the agents who do delay are independent of their current entry
cost. This just requires us to add a state variable which specifies the number of potential
entrants in each period.

It is more difficult to allow potential entrants in a given year to wait and enter in a
future period when either (i) the number of available potential entrants is unknown to
the other agents in the market, and/or (ii) when a potential entrant who delays in a given
period has a setup cost in a following period which is correlated with their current setup
cost. The difficulty does not lie in formulating the Bellman equation for the potential
entrant; it is easy enough to add to that equation an option of remaining in the industry
as a potential entrant in the next period. What is harder is to keep track of the number
of potential entrants and the distribution of their setup costs when either the potential
entrant’s setup costs are correlated over periods, or when past potential entrants may
(but need not) still be present (as they may have left to engage in some other activity).
The reason is that then the number of potential entrants and the distribution of their setup
costs depends on past states; i.e. then the incumbent firms would use the observation that
there were potential entrants who had not entered in prior periods to infer the number
and potential setup costs of the potential entrants in the current period.

There are a number of possible workable alternatives here. For example we might
allow potential entrants to delay by a small number of periods and then keep track of
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their number and the distribution of their setup costs over those periods. Alternatively
we could keep track of sufficient statistics for the distribution of the number of potential
entrants and their setup costs (as is done in the asymmetric information model discussed
below). Yet another alternative is to assume that the setup cost is composed of a deter-
ministic part that is publicly known and a random part that is privately observed and
then allow for a number of different types of entrants according to the deterministic part
of setup costs (assuming the privately observed costs are independent over time). We do
not know of anyone who has explored these (or any other) alternatives to date.

Timing There are at least two aspects of timing that we have not delved into. One
is the timing of when decisions are made. The other is the timing of the realizations
of random variables and any lags between their updated values and the values of the
“payoff relevant” random variables that affect the profit function. We begin with the
timing of decisions.

The continuous-time model assumes that controls can be changed continuously while
the discrete time version assumes that they can only be changed at fixed intervals.
Though it may be the case that one (or both) of these alternatives provide an adequate
approximation to a given setting, there may well be other cases in which the timing
of decisions is crucial to an understanding of outcomes, and the simple alternatives we
have put forth are not rich enough to capture essential features of the environment. For
example it is likely that firms have a planned schedule of meetings of the decision-
making staff, but that extra meetings can be called when a change in the state of the
industry warrants it. This makes the timing of decisions endogenous, a feature which is
not allowed in (but could be added to) the framework. In cases where there are sharp
changes in values resulting from being a first mover, a model with the endogenous tim-
ing of decisions may be necessary.

Relatedly we note that we are currently constraining decisions on our two instru-
ments, price and investment, to occur at the same time. This may not lead to an adequate
approximation for some industries; i.e. in some environments it may be more appropri-
ate to have different (possibly endogenous) lengths of time for price commitment than
for changes in investment policies. Moreover as we add further controls we should keep
in mind that decisions on different controls need not be perfectly aligned.32

The continuous- and discrete-time models also treat realizations of the investment
process differently. Starting at any initial state the continuous-time model will generate
a change to one firm’s state at some future time. The probability of the change occurring
to any particular firm depends on the investments of all firms. After that change every
agent will face the new industry state which consists of an updated state for the firm
whose state experienced the change, and exactly the same state for the n − 1 firms that
did not. As in all Markov perfect models the game then continues from this new state. As
a result to compute the continuation value in the continuous-time model we need only

32 We thank Joe Harrington for pointing this out to us.
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compute probabilities for which agent’s state is the next to change and an integral over
where it is likely to change to should it change; a computation whose burden is linear
in the number of firms. Note that this implies that the investments made by n − 1 firms
in the interval of time between the initial state and the changed state vector will, with
probability one, have no impact on the sample path of any of the agents. The discrete-
time model assumes that realizations of all firms random outcomes occur between the
instants when successive decisions are made. This forces the agent to take account of
the possibility of simultaneous changes in all firms’ states in the time interval between
its current and future decisions, and hence in calculating continuation values. However
even in the discrete-time model once a period has elapsed the investment made prior to
that period is irrelevant for future sample paths.

Note that both specifications of investment assume that either the investment is suc-
cessful, and leads to an immediate change in a “payoff relevant” random variable, or it
is “lost”. It may be that there are additional ordering, delivery and/or installation lags
before the output of the investment activity can be embodied in marketable goods or
services. Alternatively the whole idea that each new piece of information leads to an in-
crement in profits may be too narrow a conceptualization to adequately characterize the
investment process in some industries. Consider, for example, pharmaceutical research.
Even if investments do not lead to the discovery of a new drug in the current period,
they may still yield information which changes the firm’s perceptions of its (or of other
firms’) likely state in the future. If the information produced but not embodied in current
output is known to all we could accommodate it by adding additional state variables to
the model.33 Alternatively it may well be important to account for the possibility that
not all the information the firm discovers is known to the firm’s competitors. In that case
we would have to move to a model with private information which is correlated over
time, like the model of asymmetric information model discussed below. In fact there
has been very little investigation of the relationship of these timing issues to either the
implications of the model, to its computational burden, or to the ability of the model to
adequately mimic real-world environments.

Asymmetric information In many situations it is natural to think that firms know more
about their own state (their cost structure, the status of their research programs, etc.)
then about their rivals’ states. This leads us to the theoretical literature on asymmetric
information [see Green and Porter (1984), Abreu, Pearce and Stacchetti (1986), Athey
and Bagwell (2001), Athey, Bagwell and Sanchirico (2004)]. In these models firms ob-
serve the actions of (and/or signals sent by) their competitors and use them to formulate
posterior distributions on their competitors’ states. At least from a computational point
of view constructing these posteriors is difficult. They depend on all the variables that

33 If it is one-to-one with investment expenditures, then we would add a state that measures the dollar value
of the relevant investments. Alternatively there may be intermediate stages a firm must pass before it can
embody the output of the research in a marketable good or service and we would add the state achieved; see,
e.g., Doraszelski (2003) discussion of this point in the context of R&D race models.
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contain information on a firm’s competitors, and on the equilibrium conditions which
tell the firm how to extract information on the competitors’ states from whatever they
observe. As a result the integral over successor states needed to determine policies is
typically quite complicated.

Fershtman and Pakes (2005) present a different approach to computing equilibria in
dynamic games with asymmetric information which circumvents the problem of com-
puting posteriors. The idea is to obtain estimates of the expected future discounted value
of net cash flows conditional on everything the firm knows. To do this they enlarge the
state space to allow for informationally relevant variables, that is variables that contain
information on the states of its competitors, as well as payoff relevant random vari-
ables. The estimates of the expected discounted values conditional on all observables
are obtained from a “learning process” similar to that used in stochastic algorithm (see
Section 5.3). Therefore there is no curse of dimensionality in the computation of the
integral determining the value of successor states, and the algorithm converges to a re-
current class of the game in these states (which again need not grow in any particular
way as a function of the number of state variables). This is a literature which is still in
its infancy. On the other hand, as noted above, there are a number of environments in
which asymmetric information is likely to play a central role, so it is probably worth
developing further.

Dynamic consumers There are many situations in which it seems appropriate to allow
consumers as well as producers to be forward looking. Analyzing markets with either
durable or experience goods are two examples which, in and of themselves, are impor-
tant enough to warrant detailed consideration of the relevant issues. When consumers,
as well as producers, are forward looking, the fixed point that defines equilibrium values
and policies requires consumers to maximize expectations based on consistent percep-
tions of the likelihood of future producer states, and producers to maximize expectations
based on consistent perceptions on the likelihood of future consumer states; i.e. the
conditions we used to define equilibrium in Section 3 must be augmented to insure the
optimality of consumer decisions. Though this is not conceptually difficult, it does im-
ply that the state variables determining behavior include the distribution of consumer,
as well as that of producer, characteristics; a fact which, without further developments,
is likely to increase the burden of computing equilibria significantly.

There have been some attempts to allow for dynamic consumers. Markovich (2004)
and Markovich and Moenius (2005) have consumers that look two periods into the fu-
ture in an oligopoly model and Nair (2005) has two types of forward-looking consumers
in a monopoly model. Ching (2003) incorporates consumers learning into a dynamic
model of the market for clonidine, a prescription drug, using estimated parameters from
Ching (2002). However, he assumes that consumers base their purchase decision solely
on their utility in the current period. Since most of manufacturing produces durable
goods, and markets with experience goods typically raise a number of important policy
issues (think of the market for prescription pharmaceuticals), the fact that we know of
so few applications of equilibrium modeling when both consumers and producers are
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forward looking testifies to the difficulty of computing the equilibria from such models.
Advances in computing hardware will no doubt help here, but this is definitely an area
where algorithmic advances would be most welcome.

9. Conclusions

Dynamic analysis of imperfectly competitive markets is still in its infancy. Indeed there
remain open questions in just about every dimension of the analysis. We have pointed
out a number of ways one could make our assumptions richer. However even if we ac-
cept the modeling assumptions there remains an open and important theoretical question
about how to select among multiple equilibria and about the relationship of the output
of the algorithm to that selection mechanism. On a more applied front the extensions
of the framework needed to analyze topics of obvious importance to the economy, such
as the analysis of markets for durable, experience, or (most types of) network goods,
are not yet available. Moreover the burden of currently available techniques for com-
puting the equilibria to the models we do know how to analyze is still large enough to
be a limiting factor in the analysis of many empirical and theoretical issues of interest.
Finally we have adhered throughout to the notion of Markov perfect equilibria. Weaker
notions of equilibria may be all that one can justify when describing the evolution of
the industries we want to study [see, e.g., Fudenber and Levine’s (1993) notion of self-
confirming equilibrium]. The weaker notions may also be easier to use in applied work
[see Fershtman and Pakes (2005)], and have different implications then the stronger
Markov perfect notion [see, e.g., Esponda (2005)].

On the other hand, we have to start somewhere. Moreover perhaps the most notable
aspect of the applied results thus far is that even given all their assumptions and lim-
itations they have reproduced phenomena that we observe in actual industries rather
closely (see the discussion in Section 7 and the literature cited there). At the very least
this has generated a deeper understanding of those phenomena. Of course we want to
push the tools reviewed here further, possibly far enough to use to form predictions
that would be accurate enough to use in policy analysis. The predictive accuracy of the
current tools has not really been analyzed in any formal way, and is likely to vary with
both the institutional setting and the issues of interest. Still one has to keep in mind
that policy choices are often based on predictions of some form, and a computational
tool would at least have the advantage of enabling an internally consistent quantitative
assessment of alternatives.
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