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1 Empirical Model: Specification, Estimation, and Iden-

tification Details

1.1 Summary of the Empirical Model

At the time of announcement, a procurement project is characterized by a set of observable

characteristics (xj, zj) and unobserved characteristic uj where (xj, uj) and zj denote characteris-

tics that affect the distributions of project cost, F k
c (.|xj, uj), and the distribution of entry costs,

Gk
d(.|zj), respectively. After the project is announced, firms identify themselves as potential

bidders. Denote the numbers of potential bidders for project j by (N1j, N2j).

Each potential bidder i observes (xj, uj, zj, N1j, N2j) and his private entry cost realiza-

tion, dij. On the basis of this information, a potential bidder makes the participation decison,

Iij(dij, xj, uj, zj, N1j, N2j), where Iij = 1 if bidder i participates in the auction for project j and

Iij = 0 otherwise. This participation strategy is characterized by a group-specific cut-off point on

the support of the entry cost distribution, Dk(xj, uj, zj, N1j, N2j). The equilibrium participation

strategy is consistent with bidders’ beliefs about the likelihood of their competitors’ participation

in the auction (and the observed participation probabilities):

pk(xj, uj, zj, N1j, N2j) =

∫
Iij(dij, xj, uj, zj, N1, N2)dGk

d(dij|zj).

After participation decisions are made, the numbers of actual bidders, (n1j, n2j), are

realized. Conditional on (xj, uj, zj, N1j, N2j) the number of actual bidders, nkj, is distributed

according to a binomial distribution with a probability of success of pk(xj, uj, zj, N1j, N2j) and

Nkj trials.

Participating firms invest into discovering their project costs, cij, and prepare their

bids, bij = βk(i)(cij|n1j, n2j, F
1
c (.|xj, uj), F

2
c (.|xj, uj)), to be submitted to the auctioneer. Here

βk(.|n1j, n2j, F
1
c , F 2

c ) denotes the bidding strategy used by firms of group k in the auction for

project j. The distribution of bids submitted for a project characterized by (xj, uj, n1j, n2j) is

given by

F k
b (b|xj, uj, n1j, n2j) = F k

c (β−1
k (b|xj, uj, n1j, n2j)|xj, uj).

1.2 Assumptions

In this section, we list the assumptions that we impose on bidders’ project and entry cost

distributions that give rise to the empirical model in the paper. We assume that bidders’ project

costs satisfy the following assumptions:

(A-1) cij = c̃ijuj, where c̃ij denotes the firm-specific component of bidders’ costs and uj the un-

observed project heterogeneity component that is observed by all bidders, but unobserved
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by the econometrician.

Assumption (A-1) implies that βk(i)(cij|xj, uj, n1j, n2j) = ujβ̃k(i)(c̃ij|xj, n1j, n2j) where βk(.|.) and

β̃k(.|.) denote the group-k bidding strategies associated with an arbitrary uj and with uj = 1,

respectively. Thus, bij = b̃ijuj and ln(bij) = ln(b̃ij) + ln(uj).

(A-2) The log of the unobserved heterogeneity component is distributed according to a normal

distribution. The conditional expectation and variance of ln(uj) are E[ln(uj)|xj, zj, N1j, N2j] =

0 and Var(ln(uj)|xj, zj, N1j, N2j) = σ2
u.

(A-3) c̃ij are mutually independent conditionally on (xj, N1j, N2j) and independent of the un-

observed project heterogeneity component, uj:

Fc̃|x,u(c̃1j, ..., c̃N1j+N2j ,j|xj, uj) =

= Fc̃|x(c̃1j, ..., c̃N1j+N2j ,j|xj) =

N1j∏
i=1

F 1
c̃ (c̃ij|xj)

N2j∏
i=1

F 2
c̃ (c̃ij|xj)

for every (c̃1j, ..., c̃N1j+N2j ,j) that are points of continuity for F 1
c̃ (.|xj) and F 2

c̃ (.|xj).

(A-4) The log of the firm-specific bid component is distributed according to a normal distribu-

tion. The conditional expectation and variance of ln(b̃ij) are given by:

E[ln(b̃ij)|xj, n1j, n2j] = [xj, n1j, n2j]
′αk(i)

Var[ln(b̃ij)|xj, n1j, n2j] = (exp(y′jηk(i)))
2

Here, yj includes some of [xj, n1j, n2j] and, possibly, their squares.

Further, we assume that bidders’ entry costs satisfy the following assumptions:

(A-5) Entry costs dij are distributed according to a normal distribution left-truncated at 0

with mean E[dij|zj] = z′jγk and a constant group-specific standard deviation σG
k . The

conditional expectation and variance of dij are given by:

E[dij|xj, zj, N1j, N2j] = z′jγk(i)

Var[dij|xj, zj, N1j, N2j] = σ2
k(i).

(A-6) Entry costs dij are private information to firm i and are mutually independent condition-

ally on (xj, zj, N1j, N2j) and independent of the unobserved project heterogeneity compo-
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nent, uj:

Gd|x,z,N1,N2(d1j, ..., dN1+N2,j|xj, zj, N1j, N2j, uj) =

N1j∏
i=1

G1(dij|xj, zj, N1j, N2j)

N2j∏
i=1

G2(dij|xj, zj, N1j, N2j).

1.3 Entry equilibrium and conditional distribution of uj

Recall that a potential bidder i’s participation strategy is characterized by a group-specific

cut-off point on the support of the entry cost distribution, Dk(xj, uj, zj, N1j, N2j), resulting

in equilibrium participation beliefs of pk(xj, uj, zj, N1j, N2j). Assumption (A-6) implies that

conditional on (xj, uj, zj, N1j, N2j), the number of actual bidders is distributed according to the

product of two binomial distributions with probabilities of success given by pk(xj, uj, zj, N1j, N2j)

and Nkj trials, k = 1, 2:

Pr(n1j = k1, n2j = k2|xj, uj, zj, N1j, N2j) =

Ck1
N1j

Ck2
N2j

p1(·)k1 (1− p1(·))N1j−k1 p2(·)k2 (1− p2(·))N2j−k2 ,

where Ck
N denotes the binomial coefficient of choosing k bidders out of N potential competitors,

N !/(k!(N − k)!).

An important and immediate consequence of the endogenously determined numbers of

bidders, (n1j, n2j), is that

h(uj|n1j, n2j) 6= h(uj)

since the joint distribution of (n1j, n2j) depends on u. Specifically,

hu(uj|n1j, n2j) =
P̃ (uj, n1j, n2j)

P̃ (n1j, n2j)
=

∑
N1j ,N2j

P̃ (n1j, n2j|N1j, N2j, uj)hu(uj|N1j, N2j)∫ ∑
N1j ,N2j

P̃ (n1j, n2j|N1j, N2j, uj)hu(uj|N1j, N2j)du
=

∑
N1j ,N2j

P̃ (n1j, n2j|N1j, N2j, uj)hu(uj)∫ ∑
N1j ,N2j

P̃ (n1j, n2j|N1j, N2j, uj)hu(uj)du
.

Here, P̃ (uj, n1j, n2j) denotes the joint probability of (uj, n1j, n2j) and P̃ (n1j, n2j|N1j, N2j, uj)

is the probability of (n1j, n2j) conditional on (N1j, N2j, uj).
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1.4 Moment Conditions: Bid Distribution

In this section we use assumptions (A-1) through (A-4) to derive moment conditions to estimate

the parameters of the bid distribution.

First Order Moments. Assumptions (A-1) and (A-4) imply that

ln(b̃ij) = [xj, n1j, n2j]
′αk(i) + εij

where E[εij|xj, n1j, n2j] = 0, and

ln(bij) = [xj, n1j, n2j]
′αk(i) + ln(uj) + εij.

Then

m1 =E[x′j(ln(bij)− [xj, n1j, n2j]
′αk(i))] =

Ex,n1,n2 [E[x′j(ln(bij)− [xj, n1j, n2j]
′αk(i))|xj, n1j, n2j]] =

Ex,n1,n2 [E[x′j(ln(uj) + εij)|xj, n1j, n2j]] =

Ex[x
′
jE[ln(uj)|xj]] + Ex,n1,n2 [x

′
jE[εij|xj, n1, n2]] = 0.

An empirical counterpart of this moment condition is

m̂1 =
1∑J

j=1(n1j + n2j)

∑J

j=1

∑n1j+n2j

i=1
[x′j(ln(bij)− [xj, n1j, n2j]

′αk(i))].

Next,

m2 =E[nkj(ln(bij)− [xj, n1j, n2j]
′αk(i))] =

Ex,n1,n2 [E[nkj(ln(bij)− [xj, n1j, n2j]
′αk(i))|xj, n1j, n2j]] =

Ex,n1,n2 [E[nkj(ln(uj) + εij)|xj, n1j, n2j]] =

Ex,n1,n2 [E[nkj ln(uj)|xj, n1j, n2j] + E[nkjεij|xj, n1j, n2j]] =

Ex,N1,N2 [E[nkj ln(uj)|xj, N1j, N2j]] =

∫ ∫ Nkj∑
nk=1

N−kj∑
n−k=1

nk ln(uj) Pr(nk, n−k|xj, uj, Nkj, N−kj)h(u)du dFx,Nk,N−k
(xj, Nkj, N−kj).

Here, we use the notation −k to denote the opposite group, that is −k = 1 if k = 2 and −k = 2

if k = 1. The last term arises because of the dependence of the distributions of the number of

bidders on the realization of unobserved project heterogeneity.
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An empirical counterpart of this moment condition is

m̂2 =
1∑J

j=1(n1j + n2j)

∑J

j=1

∑n1j+n2j

i=1

(
nkj(ln(bij)− [xj, n1j, n2j]

′αk(i))

− 1

ns

∑ns

s=1

Nkj∑
nk=1

N−kj∑
n−k=1

nk ln(us) Pr(nk, n−k|xj, us, Nkj, N−kj)
)
,

where we let us denote a draw from the unconditional distribution of u, h(u).

Second Order Moments. Let i1 and i2 indicate two bidders from groups k(i1) and k(i2).

Then

m3 =E[(ln(bi1j)− ln(bi2j))
2] =

Ex,n1,n2 [E[(εi1j)
2|xj, n1, n2]] + Ex,n1,n2 [E[(εi2j)

2|xj, n1, n2]]+

Ex,n1,n2 [([xj, n1j, n2j]
′(αk(i1) − αk(i2)))

2] =

Ex,n1,n2 [(exp(y′jηk(i1)))
2 + (exp(y′jηk(i2)))

2] + Ex,n1,n2 [([xj, n1j, n2j]
′(αk(i1) − αk(i2)))

2]

This simplifies to 2E[(exp(y′jηk(i1)))
2] if k(i1) = k(i2). Further, letting xjl denote an element of

xj, we have that

m4 =E[xjl(ln(bi1j)− ln(bi2j))
2] =

Ex,n1,n2 [E[xjl(εi1j − εi2j)
2|xj, n1, n2]] + Ex,n1,n2 [xjl([xj, n1j, n2j]

′(αk(i1) − αk(i2)))
2] =

Ex,n1,n2 [xjlE[(εi1j)
2 + (εi2j)

2|xj, n1, n2]] + Ex,n1,n2 [xjl([xj, n1j, n2j]
′(αk(i1) − αk(i2)))

2] =

Ex,n1,n2 [xjl((exp(y′jηk(i1)))
2 + (exp(y′jηk(i2)))

2)] + Ex,n1,n2 [xjl([xj, n1j, n2j]
′(αk(i1) − αk(i2)))

2],

which again simplifies to 2E[xjl(exp(y′jηk(i1)))
2] if k(i1) = k(i2).

The empirical counterparts of these two moment conditions are given by:

m̂3 =
2∑J

j=1 nj(nj + 1)

∑J

j=1

∑nj

i1=1

∑nj

i2=i1

(
(ln(bi1j)− ln(bi2j))

2 − (exp(y′jηk(i1)))
2

− (exp(y′jηk(i2)))
2 − ([xj, n1j, n2j]

′(αk(i1) − αk(i2)))
2
)

m̂4 =
2∑J

j=1 nj(nj + 1)

∑J

j=1

∑nj

i1=1

∑nj

i2=i1

(
xjl(ln(bi1j)− ln(bi2j))

2

− xjl((exp(y′jηk(i1)))
2 + (exp(y′jηk(i2)))

2)− xjl([xj, n1j, n2j]
′(αk(i1) − αk(i2)))

2
)
,

with nj = n1j + n2j.

m̂3 and m̂4 specify an empirical moment condition for every parameter of the variance of

b̃ and, therefore, allow us to identify and consistently estimate all parameters ηk.
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Finally, to estimate the variance of the unobserved heterogeneity component, σ2
u, two

possible moment conditions could be exploited. First, note that

m5a =E[(ln(bij)− [xj, n1j, n2j]
′αk(i))

2] =

Ex,n1,n2 [E[(ln(uj) + εij)
2|xj, n1, n2]] =

Ex,n1,n2 [E[(ln(uj))
2|xj, n1, n2] + E[(εij)

2|xj, n1, n2]] =

σ2
u + Ex,n1,n2 [(exp(y′jηk(i)))

2].

Additionally, if k(i1) 6= k(i2):

m5b =E[(ln(bi1j)− [xj, n1j, n2j]
′αk(i1))(ln(bi2j)− [xj, n1j, n2j]

′αk(i2))] =

Ex,n1,n2 [E[(ln(uj) + εi1j)(ln(uj) + εi2j)|xj, n1, n2]] =

Ex,n1,n2 [E[(ln(uj))
2|xj, n1, n2] + E[εi1jεi2j|xj, n1, n2]] = σ2

u.

The empirical counterparts of these moment conditions are given by

m̂5a =
1∑J

j=1(n1j + n2j)

∑J

j=1

∑n1j+n2j

i=1

(
(ln(bij)− [xj, n1j, n2j]

′αk(i))
2 − σ2

u − (exp(y′jηk(i)))
2
)

m̂5b =
1∑J

j=1

∑nj

i1=1

∑nj

i2=i1+1 I(k(i1) 6= k(i2))

∑J

j=1

∑nj

i1=1

∑nj

i2=i1+1
I(k(i1) 6= k(i2))

((
ln(bi1j)− [xj, n1j, n2j]

′αk(i1)

)(
ln(bi2j)− [xj, n1j, n2j]

′αk(i2)

)− σ2
u

)
.

where I(·) denotes an indicator function. For simplicity, we rely on condition m̂5a to estimate

the variance of u.

Higher Order Moments. We exploit the properties of the normal distributions of ln(uj) and

εij to add higher-order moment conditions. For a normally distributed random variable X with

mean µ and standard deviation σ, the centered moment of order p is given by:

E[(X − µ)p] = I(p is even)(p− 1)!!σp,

where

(p− 1)!! =
p!

2
p−2
2

p−2
2

!
if p is even.
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Applied to our setting, we have for p = 3, ..., P that

m5+p−2 =E[(ln(bij)− [xj, n1j, n2j]
′αk(i))

p] =

Ex,n1,n2 [E[(ln(uj) + εij)
p|xj, n1, n2]] =

Ex,n1,n2 [E[
∑p

t=0
Ct

p ln(uj)
tεp−t

ij ]] =

Ex,n1,n2 [
∑p

t=0
Ct

pE[ln(uj)
t]E[εp−t

ij ]] =
∑p

t=0
Ct

pI(t is even)I((p− t) is even)(t− 1)!!(p− t− 1)!!σt
uEx,n1,n2 [(exp(y′jηk(i)))

p−t].

The empirical counterparts of moments m5+p−2 are given by

m̂5+p−2 =
1∑J

j=1(n1j + n2j)

∑J

j=1

∑n1j+n2j

i=1

((
ln(bij)− [xj, n1j, n2j]

′αk(i)

)p−
∑p

t=0
Ct

pI(t is even)I((p− t) is even)(t− 1)!!(p− t− 1)!!σt
u

(
exp(y′jηk(i))

)p−t
)

1.5 Moments: Cost of Entry Distribution

In deriving the second set of moment conditions, we rely on the properties of the binomial

distribution of the numbers of small and large bidders, conditional on observed and unobserved

project characteristics and the numbers of potential bidders, N1j and N2j.

We exploit that

E[nkj|xj, zj, uj, N1j, N2j] = pk(xj, zj, uj, N1j, N2j)Nkj

E[n2
kj|xj, zj, uj, N1j, N2j] = pk(xj, zj, uj, N1j, N2j)(1− pk(xj, zj, uj, N1j, N2j))Nkj

+ N2
kjp

2
k(xj, zj, uj, N1j, N2j),

where pk(xj, zj, uj, N1j, N2j) denotes the group-specific equilibrium probabilities of participation.

We derive separate moments for bidder groups, k, and project size categories, sizej. In our

empirical specification, we consider three size categories with sizej = {small,medium,large}.

mkl
6+P−2 =E[nkj|sizej = l] =

∫ ∫
pk(xj, zj, uj, N1j, N2j)Nkj h(u)du dF (xj, zj, N1j, N2j|sizej = l)

mkl
7+P−2 =E[n2

kj|sizej = l] =

∫ ∫
(pk(xj, zj, uj, N1j, N2j)(1− pk(xj, zj, uj, N1j, N2j))Nkj+

N2
kjp

2
k(xj, zj, uj, N1j, N2j)) h(u)du dF (xj, zj, N1j, N2j|sizej = l).
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The empirical counterparts to these moment conditions are given by

m̂kl
6+P−2 =

1∑J
j=1 I(sizej = l)

∑J

j=1
I(sizej = l)

(
nkj − 1

ns

∑ns

s=1
pk(xj, zj, us, N1j, N2j)Nkj

)

m̂kl
7+P−2 =

1∑J
j=1 I(sizej = l)

∑J

j=1
I(sizej = l)

(
n2

kj −
1

ns

∑ns

s=1

(
pk(xj, zj, us, N1j, N2j)(1−

pk(xj, zj, us, N1j, N2j))Nkj + p2
k(xj, zj, us, N1j, N2j)N

2
kj

))
.

Higher Order Moments. We further include third and fourth order moments of the binomial

distribution of nk. These are given by:

mkl
8+P−2 =E[n3

kj|sizej = l] =

∫ ∫
(Nkjpk(1− 3pk + 3Nkjpk + 2p2

k − 3Nkjp
2
k+

+ N2
kjp

2
k)) h(u)du dF (xj, zj, N1j, N2j|sizej = l)

mkl
9+P−2 =E[n4

kj|sizej = l] =

∫ ∫
(Nkjpk(1− 7pk + 7Nkjpk + 12p2

k − 18Nkjp
2
k+

+ 6N2
kjp

2
k − 6p3

k + 11Nkjp
3
k − 6N2

kjp
3
k + N3

kjp
3
k)) h(u)du dF (xj, zj, N1j, N2j|sizej = l).

The empirical counterparts to these moment conditions are given by

m̂kl
8+P−2 =

1∑J
j=1 I(sizej = l)

∑J

j=1
I(sizej = l)

(
n3

kj −
1

ns

∑ns

s=1

(
Nkjpk(1− 3pk+

+ 3Nkjpk + 2p2
k − 3Nkjp

2
k + N2

kjp
2
k)

))

m̂kl
9+P−2 =

1∑J
j=1 I(sizej = l)

∑J

j=1
I(sizej = l)

(
n4

kj −
1

ns

∑ns

s=1

(
Nkjpk(1− 7pk+

7Nkjpk + 12p2
k − 18Nkjp

2
k + 6N2

kjp
2
k − 6p3

k + 11Nkjp
3
k − 6N2

kjp
3
k + N3

kjp
3
k)

))
.

1.6 Econometric identification of the project cost distribution

In this section, we derive three properties of the joint distributions of the firm-specific cost

and bid components. They form the basis for the nonparametric identification of Fc̃|x(.) in the

presence of unobserved heterogeneity given our model with endogeneous entry. The properties

imply that the results in Krasnokutskaya (Forthcoming) can be applied in this environment.

First, recall that in our model potential bidders do not observe the realizations of their

firm-specific cost component when deciding whether to participate in the market. Therefore, the

following property holds.

Property 1. There is no selection into participation on the firm-specific cost com-

ponent. That is, firm-specific cost components are independent of the numbers of
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bidders conditional on project characteristics:

Fc̃|x,u,n1,n2(c̃1j, .., c̃N1j+N2j ,j|xj, uj, n1j, n2j) = Fc̃|x,u(c̃1j, .., c̃N1j+N2j ,j|xj, uj).

At the time when bids are constructed, all participants learn the numbers of actual

bidders by group, (n1j, n2j), and incorporate them into the bids. As a result, firm-specific bid

components depend on (n1j, n2j). Property 1, together with assumption (A-3), implies:

Property 2. Individual bid components are mutually independent conditionally on

(xj, n1j, n2j):

Fb̃|x,n1,n2
(b̃1j, .., b̃n1j+n2j

|xj, n1j, n2j) =

n1j+n2j∏
i=1

Fb̃|x,n1,n2
(b̃ij|xj, n1j, n2j)

Proof:

Fb̃|x,n1,n2
(b̃1j, .., b̃(n1+n2)j|xj, n1j, n2j) =

Fc̃|x,n1,n2

(
β̃−1

k(1)(b1j|xj, n1j, n2j), ..., β̃
−1
k(n1+n2)(b(n1+n2)j|xj, n1j, n2j)

∣∣∣xj, n1j, n2j

)
=

Fc̃|x
(
β̃−1

k(1)(b1j|xj, n1j, n2j), ..., β̃
−1
k(n1+n2)(b(n1+n2)j|xj, n1j, n2j)

∣∣∣xj

)
=

n1∏
i=1

F 1
c̃|x

(
β̃−1

1 (bij|xj, n1j, n2j)
∣∣xj

) n2∏
i=1

F 2
c̃|x

(
β̃−1

2 (bij|xj, n1j, n2j)
∣∣xj

)
=

n1∏
i=1

F 1
b̃|x,n1,n2

(b̃ij|xj, n1j, n2j)

n2∏
i=1

F 2
b̃|x,n1,n2

(b̃ij|xj, n1j, n2j).

End of Proof

Here, the first and last equalities hold due to the monotonicity of the firm-specific bidding

function β̃k(.|x, n1, n2), while Property 1 implies the second equality because of the lack of

selection on project cost among entrants. Finally, assumption (A-3) of mutual independence of

individual cost components implies the third equality.

Assumptions (A-1), which implies that the firm-specific bidding function β̃k(.|x, n1, n2)

does not depend on u, and (A-3), together with the monotonicity of β̃k(.|x, n1, n2), yield

Property 3. Individual bid components are independent of the unobserved auction

heterogeneity component conditionally on (x, n1, n2):

Fb̃|x,n1,n2,u(b̃1j, ..., b̃n1+n2,j|xj, n1j, n2j, uj) = Fb̃|x,n1,n2
(b̃1j, ..., b̃(n1+n2)j|xj, n1j, n2j)
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Proof:

Fb̃|x,n1,n2,u(b̃1j, ..., b̃(n1+n2)j|xj, n1j, n2j, uj) =

Fc̃|x,n1,n2,u

(
β̃−1

k(1)(b̃1j|xj, n1j, n2j), ..., β̃
−1
k(n1+n2)(b̃(n1+n2)j|xj, n1j, n2j)

∣∣∣xj, n1j, n2j, uj

)
=

Fc̃|x
(
β̃−1

k(1)(b̃1j|xj, n1j, n2j), ..., β̃
−1
k(n1+n2)(b̃(n1+n2)j|xj, n1j, n2j)

∣∣∣xj

)
=

Fb̃|x,n1,n2
(b̃1j, ..., b̃(n1+n2)j|xj, n1j, n2j).

End of proof.

1.7 Econometric identification of the entry cost distribution

This section studies the nonparametric identification of the distribution of entry costs, G(.|z), in

the presence of unobserved project heterogeneity assuming that H(.) and F (.|x) are identified.

The full identification proof is developed in Krasnokutskaya (2009). We summarize the argument

here for completeness. We focus on the case of symmetric bidders to simplify exposition.

We assume that xj = [x1j, x2j] such that the variables in x2j are part of zj whereas the

variables in x1j are not. In this section we always condition on zj and, therefore, suppress (zj, x2j)

going forward.

We employ the following notations. We denote bidder i’s expected profit conditional on

x1, the number of bidders, n, and u by

uπ0(x1, n) = u

∫
(β̃(c̃)− c̃)(1− F (c̃|x1))

n−1f(c̃|x1)dc̃

We assemble profit levels that realize for every possible number of competitors of bidder i,

nc = 0, ..., N if there are N + 1 potential bidders, into the vector

uπ0(x1) = (uπ0(x1, 1), uπ0(x1, 2), ..., uπ0(x1, N + 1)).

It is possible to show that under fairly natural assumptions,

π0(x1, 1) > π0(x1, 2) > ... > π0(x1, N + 1).

Here we just assume that.

If p is an individual bidder’s probability of entering the market, then the vector of prob-

abilities for the number of competitors participating in the auction is given by:

pN = ((1− p)N , C1
Np(1− p)N−1, ..., pN).

where Ck
N again denotes the binomial coefficient of choosing k bidders out of N potential com-
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petitors, N !/(k!(N − k)!).

We denote the ex-ante expected profit of an individual potential bidder from participating

by

uπ̄0(x1, p) = up′Nπ0(x1).

where the firm integrates out the number of competitors using its beliefs over their participation.

The entry threshold that determines the marginal entrant is then given by:

D(x1, u, p) =





uπ̄0(x1, p) d ≤ uπ̄0(x1, p) ≤ d̄

d uπ̄0(x1, p) ≤ d

d̄ d̄ ≤ uπ̄0(x1, p),

and p is a solution to

p = G(D(x1, u, p)),

making it a function of x1 and u, p(x1, u). Finally, the probability of entry at x1 is given by

p(x1) =

∫
p(x1, u)h(u)du.

We proceed under the following assumptions:

(B-1) There exists at least one variable x1 that affects bidders’ project costs but not their entry

costs.

(B-2) The distribution of entry costs has a bounded support, supp(G(.|z)) = [d(z), d̄(z)].

(B-3) The distribution of unobserved heterogeneity has a bounded support, supp(H(.)) = [u, ū].

We make assumptions (B-2) and (B-3) to simplify exposition; they can be relaxed.

(B-4) The expected profit, uπ0(x1, n), is continuous in x1.

Assumption (B-4) can be obtained easily with minimal assumptions on the primitives. For

transparency reasons, we choose to state it here as an assumption.

(B-5) For every r such that d ≤ r ≤ d there exist x∗1 and x∗∗1 that satisfy ūπ0(x
∗
1, 1) = r and

ūπ0(x
∗∗
1 , N + 1) = r.

(B-6) G(.) is an absolutely continuous distribution.

The condition (B − 5) is essentially a “full support” type of condition. The proof in the case of

a discrete distribution follows very similar steps.

We begin by establishing that the ex-ante expected profit, uπ̄0(x1, p), declines in p, before

turning to the proof of identification of G(.).

11



Proposition 1. Ex-ante expected profit is strictly decreasing in the individual

probability of participation.

Proof:

Here we show that π̄0(x1, p) is decreasing in p. From this, Proposition 1 follows immediately.

π̄0(p) = (1− p)Nπ0(1) + pNπ0(N + 1) +
N−1∑
n=1

Ck
Npn(1− p)N−nπ0(n + 1)

Then

π̄′0(p) = −N(1− p)N−1π0(1) + NpN−1π0(N + 1)

+
N−1∑
n=1

Cn
N(npn−1(1− p)N−n − (N − n)pn(1− p)N−1−n)π0(n + 1)

First, we transform the terms in the sum.

N−1∑
n=1

Cn
Nnpn−1(1− p)N−nπ0(n + 1) =

N

N−2∑

l=0

C l
N−1p

l(1− p)N−1−lπ0(l + 2),

where we perform the change of variables l = n− 1. Similarly,

N−1∑
n=1

Cn
N(N − n)pn(1− p)N−1−nπ0(n + 1) =

N

N−1∑
n=1

Cn
N−1p

n(1− p)N−1−nπ0(n + 1).

Substituting the transformed expressions into π̄′0(p) results in:

π̄′0(p) = N
(
(1− p)N−1π0(2)− (1− p)N−1π0(1)+

pN−1π0(N + 1)− pN−1π0(N)+

N−1∑

l=1

C l
N−1p

l(1− p)N−1−l(π0(l + 2)− π0(l + 1))
)
.

Since we assume that π0(x1, 1) > π0(x1, 2) > ... > π0(x1, N + 1), it follows that π̄′0(p) < 0.

End of Proof
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Note that the boundary of the support of G(.) can be identified as follows:

d = ūπ̄0(x
0
1, 0)

d̄ = uπ̄0(x
1
1, 1),

where x0
1 is the smallest x1 such that there is entry into the market and x1

1 is the smallest x1

such that all potential entrants enter.

Next, we establish main result of this section. Consider the following problem:

p(x1) =

∫
G(D(x1, u))h(u)du for all x1

such that

D(x1, u) = uπ̄0(x1, G(D(x1, u))) when d ≤ uπ̄0(x1, G(D(x1, u))) ≤ d̄.

If data are generated by the model described in our paper, then the distribution of entry costs

G(.) satisfies the restrictions imposed by this problem and thus solves it for every x1. The result

below shows that G(.) is the only solution to this problem.

Theorem 1. The cumulative distribution function G(.) is identified.

Proof:

Suppose that there exist two solutions G1(.) and G2(.) such that G1(d) 6= G2(d) for some

d. Since the distributions are continuous, there exists for each point d′ with G1(d
′) 6= G2(d

′) an

open interval around d′ such that for every point in this interval G1 6= G2. Since the supports of

G1 and G2 are bounded, there is a finite number of such intervals.1 Finally, notice that within

each of the open intervals either G1 < G2 or G1 > G2 by the continuity of the distributions.

It is then possible to find such an open subset with unequal distributions closest to the

low end of the support. Let us denote it by (da, db). Two distinct cases are possible; case 1:

da = d and case 2: da 6= d. First consider case 1.

Case 1. Without loss of generality assume that G1(d) > G2(d) on (d, db). Consider a point

d1 ∈ (d, db).

(a) There exists a point x∗1 such that ūπ̄0(x
∗
1, G1(d1)) = d1.

This follows from Property 1 that uπ̄0(x1, p) is decreasing in p, which implies that

ūπ̄0(x1, G1(d1)) > ūπ̄0(x1, 1).

Notice also that π̄0(x1, 1) = π(x1, N + 1). Assumption (B-5) implies that there exist x′1 such

1Indeed, it is possible to choose a closed interval inside each of these open sets. Since the support is bounded,
the collection of these closed intervals is compact. The original open intervals create a countable open cover of
this set. Therefore, there is a finite subset of this cover that still covers the compact set. From the construction
of the compact set, it is clear that the original open cover is finite.
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that ūπ(x′1, N + 1) ≥ d1 and, therefore, ūπ̄0(x
′
1, G1(d1)) ≥ d1. Similarly,

ūπ̄0(x1, G1(d1)) ≤ ūπ̄0(x1, 0) = ūπ(x1, 1)

and there exists x′′1 such that ūπ(x′′1, 1) ≤ d1 and, therefore, ūπ̄0(x
′′
1, G1(d1)) ≤ d1. By continuity

of π̄0(., G1(d1)) in x1, there thus exists x∗1 such that π̄0(x
∗
1, G1(d1)) = d1.

(b) There exists d2 such that ūπ̄0(x
∗
1, G2(d2)) = d2.

Indeed, as before,

ūπ̄0(x
∗
1, G2(d)) > ūπ0(x

∗
1, 1) > d

since

d < d1 = ūπ̄0(x
∗
1, G1(d1)) < ūπ0(x

∗
1, 1).

Similarly,

ūπ̄0(x
∗
1, G2(d)) < ūπ0(x

∗
1, N + 1) < ūπ̄0(x

∗
1, G1(d1)) = d1 < d.

Since the ex-ante expected profit, ūπ̄0(x
∗
1, G2(d)), is continuous in d, there exists d2 ∈ [d, d]

such that ūπ̄0(x
∗
1, G2(d2)) = d2.

(c) The following holds: d2 > d1 and G2(d2) < G1(d1).

This follows again from the ex-ante expected profit, ūπ̄0(x
∗
1, p), being decreasing in p,

which implies

ūπ̄0(x
∗
1, G2(d1)) > ūπ̄0(x

∗
1, G1(d1)) = d1.

Therefore, d1 6= d2. Moreover, for any d < d1:

ūπ̄0(x
∗
1, G2(d)) > ūπ̄0(x

∗
1, G1(d1)) = d1 > d.

Thus, d2 > d1. Further,

π̄0(x
∗
1, G1(d1)) = d1/ū

π̄0(x
∗
1, G2(d2)) = d2/ū.

Therefore, π̄0(x
∗
1, G1(d1)) < π̄0(x

∗
1, G2(d2)). This implies that G1(d1) > G2(d2) since the ex-ante

expected profit is decreasing in the probability of participation.

(d) Define u∗ = d/π(x∗1, 1). Then for all u ∈ [u∗, u], D(u, x∗1, Gi) exists with D(u, x∗1, G1) <

D(u, x∗1, G2), while G1(D(u, x∗1, G1)) > G2(D(u, x∗1, G2)).

Indeed, for an arbitrary u ∈ (u∗, u]:

uπ̄0(x
∗
1, Gi(d)) = uπ0(x

∗
1, 1) > u∗π0(x

∗
1, 1) = d.
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Similarly,

uπ̄0(x
∗
1, Gi(d)) = uπ0(x

∗
1, N + 1) < ūπ0(x

∗
1, N + 1) < ūπ̄0(x

∗
1, G1(d1)) = d1 < d.

Therefore, by continuity of the ex-ante profit, interior solutions, d < D(u, x∗1, Gi) < d, exist

for every u ∈ (u∗, u] whereas D(u∗, x∗1, Gi) = d by definition. Finally, point (c) implies that

G1(D(u, x∗1, G1)) > G2(D(u, x∗1, G2)) for u ∈ (u∗, u].

(e) Finally,

p1(x
∗
1, G1) =

∫ u

u∗
G1(D(u, x∗1, G1))h(u)du

p2(x
∗
1, G2) =

∫ u

u∗
G2(D(u, x∗1, G2))h(u)du.

Therefore, p1(x
∗
1, G1) > p2(x

∗
1, G2). Thus, both distributions cannot be consistent with

the data.

Case 2. Now consider da 6= d. Since (da, db) is an open interval closest to d with G1 > G2,

G1(da) = G2(da), but G1(d) > G2(d) for d ∈ (da, db). Choose d1 ∈ (da, db). Find x∗1 such that

the solution of ūπ̄0(x
∗
1, G1(d1)) = d1. After that the steps are the same as in Case 1.

End of proof.
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2 Discussion of the optimal policy results for project 1

The government’s cost-minimizing policy for projects such as sample projects 1 and 5 is to choose

a sufficiently high large-firm discount rate such that small firms respond by not participating in

the auction. Here we provide further details on the intuition behind this result, using sample

project 1 as an example.

First note that for this project, the marginal effect of large-firm entry on the cost of

procurement is higher than that of small-firm entry. Figure A-1 shows cost of procurement con-

ditional on a particular combination of bidders, suggesting that the government’s cost responds

more to increases in large rather than small-firm participation. For example, moving from the

cost profile corresponding to one large and one small bidder to the one with two large bidders

and one small bidder entails uniformly a larger decline in cost than a move to the profile with

two small bidders and one large bidder. The larger marginal effect of large-firm participation on

the cost of procurement suggests then that the government benefits when the presence of large

participants increases.

Figures 1 and 2 document similar effects for equilibria associated with different discount

levels. Thus, the middle panel of Figure 2 shows that the large-firm probability of participation

increases (while the small-firm probability of participation decreases) with the discount level

given to large bidders. This effect is accompanied by a decrease in the government’s cost of

procurement (top panel of Figures 1 and 2). Thus, in equilibrium, the government cost decreases

as the large-firm presence increases even though the small-firm presence (and the total number

of bidders) decreases at the same time.

The desired high levels of large-firm participation, plg, may not be attainable in the

unconstrained equilibrium. In Figure A-2 below, we illustrate the participation equilibrium in

the absence of intervention (δ = 0) using optimal participation schedules for the two groups of

bidders. The optimal participation schedule shows the proportion of bidders by group k who

optimally choose to participate for a given level of participation by the other group of bidders,

p−k.

Recall that equilibrium participation decisions in our model are determined by the relative

sizes of the ex-ante expected variable profits and entry costs. To sustain a large-firm probability

of participation of plg in equilibrium, each large participant needs to earn ex-ante variable profit

of at least G−1
lg (plg). The remaining two panels in Figure A-2 display these ex-ante variable profit

levels earned under each best-response participation strategy by small (middle panel) and large

(bottom panel) firms.

The top panel suggests that for high large-firm participation, e. g. plg = 0.95, to reflect

optimal participation behavior in the unconstrained equilibrium, small-firm participation needs

to be very low (psm = 0.10). However, at a level of plg = 0.95 it is optimal for small firms to

participate at a higher level (psm = 0.25) than needed to sustain plg = 0.95. Therefore, such high
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plg-levels do not occur in the unconstrained equilibrium. The small-bidder level of participation

that is optimal is still quite low, however, reflecting the entry by small firms with very low entry

costs only.

In the unconstrained equilibrium, the large-firm participation probability is limited to

plg = 0.894 (see top panel of Figure A-2), with associated expected profit of 0.368. The middle

panel of Figure A-2 suggests that given this equilibrium large-firm participation, the expected ex-

ante variable profit levels earned by small firms are only 0.140, consistent with the low amount of

entry of only psm = 0.315 we see from this group in equilibrium. At this level of small-firm entry,

large firms do not earn sufficient variable profit to sustain additional entry beyond plg = 0.894.

Thus, the presence of even a small amount of small-firm entry is sufficient to deter additional

large-firm entry.

For increased large-firm participation to be an equilibrium outcome, the group’s expected

profit needs to rise. Since the expected price (bid) declines as plg increases, these profit gains

have to be achieved through increases in the probability of winning. A bid discount artificially

increases the benefitting group’s probability of winning and thus enables the desired increases

in large-firm profitability and participation.

Small firms, which have much higher project cost in this example than large firms, have

to bid aggressively even without a bid discount, as suggested by the level and flatness of their

expected profit profile under optimal participation. In response to a large-firm discount and the

associated further reduction in their probability of winning, small firms choose increasingly not

to enter. This does not, however, yield price increases in this particular example because of the

substantial presence of large firms in the market that counters the incentives generated by the

discount to bid less aggressively. Figure 2 illustrates these equilibrium responses to the discount.

Note also that project 1 is characterized by both strong differences in the groups’ cost

distributions and a tightness difference in the markets for small and large bidders, with Nsmall = 2

and Nlarge = 3. Figure A-2 reflects the net effect of these cost differences and market tightness

differences. The market tightness effect manifests itself in the following properties of the plotted

schedules:

1. The large-firm optimal participation schedule is flatter than the small-firm optimal partic-

ipation schedule.

2. Full participation of large bidders is never achieved. Even with psm = 0, plg = 0.97,

corresponding to 2.91 bidders. At the same time psm is close to 1, or the equivalent of two

bidders, for plg as low as plg = 0.2.

3. The profit schedule for small firms (middle panel of Figure A-2) is steeper than that for

large firms (bottom panel) since a 1 percentage point increase in the proportion of large

participants corresponds to an increase by 0.03 bidders, instead of an increase by 0.02 small
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bidders as in the case of the large-firm profit schedule.

4. The small-firm variable profit given optimal participation at plg = 0 is much higher than

the large-firm variable profit given optimal participation at psm = 0.

These effects disappear when we equalize market tightness across groups of bidders as in

Figure A-3 where we replot the optimal participation schedule and associated expected profit

levels for the case where Nsmall = Nlarge = 2.

To summarize, the discount allows the government to artificially increase the large-firm

probability of winning, thereby increasing large bidders’ profitability and inducing higher entry

by large bidders. Under the firms’ cost structures for project 1, this lowers the price paid by the

government.
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Figure A-1: Expected Cost under Fixed and Endogenous Participation, Sample Project 1
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Note: the figure compares the relationship between discount levels and the cost to the government under alter-
native assumptions on the competitive environment. We depict in gray profiles that arise when regardless of
discount, we hold the number of bidders fixed at one of six possible bidder combinations that could arise with 2
small and 3 large potential entrants. We depict in black the profile under endogenous entry. It is steeper than
the other profiles, reflecting that as the discount increases, it becomes more likely that the number of bidders is
composed of a larger number of small bidders and a lower number of large bidders obtain. These competitive
environments correspond to the higher gray profiles.
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Figure A-2: Equilibrium under No Bid Discount, Project 1
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Note: the top panel depicts the optimal participation schedules for the two groups of bidders when δ = 0. An
optimal participation schedule reflects the proportion of bidders from group k who optimally choose to participate
for a given level of participation by the other group, p−k. The bottom two panels show the expected variable
profit from participation excluding bid preparation costs associated with optimal participation level for a given
level of participation by the other group, p−k.
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Figure A-3: Equilibrium under No Bid Discount, Project 1, Nsmall = Nlarge = 2
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Note: this figure replicates the analysis in Figure A-2, but changes the number of potential large entrants to be
the same as potential small entry by setting Nsmall = Nlarge = 2.
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3 Summary of Discussion with Industry Insider on the

Timing of Information Flow

We spoke to a former construction manager for a large, publicly traded building and construction

company whose job involved preparing bids for projects. His description of the bidding process

largely overlaps with our assumed information structure. He initially purchases project plans

and at that time obtains a list of other plan holders that he updates continuously. He stated

that he is able to estimate his company’s cost of completing individual items on the contract

relatively accurately for small and standardized items based on the official project plans alone.

However, the 10 to 15 largest items on a contract are typically complex and less well-defined.

On these items - in his opinion accounting for 80% or more of the total value of the contract -

he spends significant resources both in terms of time and money on identifying and negotiating

with subcontractors, estimating the cost of materials and labor, etc. This is in line with our

assumption that a company cannot accurately determine its cost of a project based on the plans

alone, but needs to engage in a costly estimating process.

He also confirmed that subcontractors play an important role in transmitting information

between potential bidders about which competitors will ultimately be active in the auction.

Subcontractors obtain plan holder lists and contact all prime contractors that are package holders

to find out whether they intend to bid on the project and would be interested in contracting out

a portion of the contract. Since it is costly for a subcontractor to put together a cost estimate

for the prime contractor and since the prime and subcontractor are in long-term, repeated

relationships, he suggested that prime contractors reveal honestly whether or not they plan on

bidding. Negotiation between prime contractors and subcontractors typically continues right up

to the moment of bid closing making price leakage difficult.
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4 Additional Figures and Tables

Table A-1: Comparison of Entry Probabilities, Estimation and Simulation Analysis

Entry Probabilities
Estimation Simulation

Small Large Small Large
Project type Firms Firms Firms Firms
Small, rural, rd repair / bridge 0.7598 0.6138 0.7936 0.6148
Medium, rural, rd repair / bridge 0.6581 0.5141 0.6564 0.5574
Large, rural, rd repair / bridge 0.5528 0.6741 0.5844 0.7114
Small, urban, rd repair / bridge 0.5713 0.6593 0.6231 0.6432
Medium, urban, rd repair / bridge 0.2979 0.6794 0.3897 0.6409
Large, urban, rd repair / bridge 0.5366 0.6915 0.5503 0.6996
Small, rural, other work 0.5868 0.4554 0.6244 0.4543
Medium, rural, other work 0.5532 0.3650 0.5567 0.4181
Small, urban, other work 0.4949 0.6183 0.5458 0.6061
Medium, urban, other work 0.4626 0.5916 0.5324 0.5735
Large, urban, other work 0.3437 0.8567 0.4136 0.8441

Note: the table compares predicted probabilities of entry generated by our simulation routine with δ = 0.05 and
by the estimation procedure. The small discrepancy in the predicted probabilities of entry arises because in the
simulation routine, we have to trim the support of the project cost distribution to ensure that the density is
sufficiently far away from zero.
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Figure A-4: Predicted and Actual Bid Residuals
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Figure A-5: Expected Cost and Entry under Alternative Subsidy Levels, Sample Project 2
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Note: the panels display the cost to the government and entry as a function of the subsidy to large bidders,
holding the subsidy for small bidders fixed at the cost-minimizing tax level. Negative subsidy levels correspond
to taxes. The expected winning bid reflects the following interplay of participation and bidding decisions. For
subsidy levels below -0.09, only small firms are in the market and pay their optimal subsidy, resulting in a
constant winning bid. As the tax charged to large bidders starts declining, large bidders begin entering the
market, resulting in an overall increase in the number of bidders. This causes the winning bid to begin declining.
For this project, large bidders are less efficient. The winning bid start rising again for higher subsidy levels once
the additional entry of less efficient, large firms is not sufficient to offset the reduced entry of small firms. Since all
firms participate for subsidy levels above 0.2, neither group’s strategy changes for subsidies above this threshold.
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