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1 Introduction

To detect the presence of predatory pricing, antitrust authorities routinely ask whether a

firm sacrifices current profit in exchange for the expectation of higher future profit following

the exit of its rival. Because predatory pricing is an inherently dynamic phenomenon, we

show in this paper how to construct sacrifice tests for predatory pricing in a modern industry-

dynamics framework that endogenizes competitive advantage and industry structure. Due

to its presence in a number of high-profile predatory pricing cases, we focus on learning-by-

doing.

At the core of predatory pricing is the trade-off between lower profit in the short run

due to aggressive pricing and higher profit in the long run due to reduced competition. De-

termining what constitutes an illegitimate profit sacrifice—and thus predatory pricing—is

especially difficult when firms face other intertemporal trade-offs such as learning-by-doing,

network effects, or switching costs that can give rise to aggressive pricing with subsequent

recoupment. As Farrell & Katz (2005) point out, “[d]istinguishing competition from pre-

dation is even harder in network markets than in others. With intertemporal increasing

returns, there may innocently be intense initial competition as firms fight to make initial

sales and benefit from the increasing returns” (p. 204). Yet, allegations of predation (or, in

an international context, dumping) sometimes arise in settings where learning-by-doing is a

key feature of the industrial landscape. Examples include the “semiconductor wars” between

the U.S. and Japan during the 1970s and 1980s (Flamm 1993, Flamm 1996, Dick 1991), the

allegations by U.S. color television producers against Japanese producers during the 1960s

and 1970s that are at the core of the Matsushita Electric Corp. predatory pricing case

(Yamamura & Vandenberg 1986), and most recently the debate about Chinese solar panels.

In these and many other industries, a firm has an incentive to price aggressively because

its marginal cost of production decreases with its cumulative experience.1 While this makes

it difficult to disentangle predatory pricing from mere competition for efficiency on a learn-

ing curve, being able to do so is crucial when predation is alleged. In practice, antitrust

authorities find a price predatory if there is evidence of an illegitimate profit sacrifice. This,

in turn, requires a notion of what constitutes an illegitimate profit sacrifice in the first place.

In this paper, we show how the definitions of predation due to Ordover & Willig (1981)

and Cabral & Riordan (1997) can be used to determine what constitutes an illegitimate profit

sacrifice. In contrast to antitrust authorities, the economics literature focuses more directly

on the impact that a price cut has on reshaping the structure of an industry. According to

the definitions of predation due to Ordover & Willig (1981) and Cabral & Riordan (1997), a

price is predatory if it had not been worth charging absent its impact on the probability that

1See footnote 2 in Besanko, Doraszelski, Kryukov & Satterthwaite (2010) for references to the empirical
literature on learning-by-doing.
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the rival exits the industry. While the idea that predatory pricing can be usefully defined

by a “but-for” scenario has greatly influenced economists’ thinking, to our knowledge it has

rarely been formalized outside simple models such as the one in Cabral & Riordan (1997).2

In this paper, we show how to adapt the definitions of predation due to Ordover & Willig

(1981) and Cabral & Riordan (1997) to an industry-dynamics framework along the lines of

Ericson & Pakes (1995). We then show how to construct sacrifice tests from these definitions.

The economic definitions of predation in the extant literature therefore amount to particular

ways of disentangling an illegitimate profit sacrifice stemming from predatory pricing from

a legitimate effort to increase cost efficiency through aggressive pricing.

To construct sacrifice tests in a dynamic pricing model similar to the models of learning-

by-doing in Cabral & Riordan (1994) and Besanko et al. (2010), we build on Besanko,

Doraszelski & Kryukov (2013) and decompose the equilibrium pricing condition. The insight

in that paper is that the price set by a firm reflects two goals besides short-run profit. First,

by pricing aggressively, the firm may move further down its learning curve and improve its

competitive position in the future, giving rise to an advantage-building motive. Second, the

firm may prevent its rival from moving further down its learning curve and becoming a more

formidable competitor, giving rise to an advantage-denying motive.

To isolate the probability of rival exit—the linchpin of the definitions of predation due

to Ordover & Willig (1981) and Cabral & Riordan (1997)—we go beyond Besanko et al.

(2013) and decompose the equilibrium pricing condition with even more granularity. One

component of the advantage-building motive is the advantage-building/exit motive. This is

the marginal benefit to the firm from the increase in the probability of rival exit that results

if the firm moves further down its learning curve. The advantage-denying/exit motive is

analogously the marginal benefit from preventing the decrease in the probability of rival

exit that results if the rival moves further down its learning curve. Other terms in the

decomposed equilibrium pricing condition capture the impact of the firm’s pricing decision

on its competitive position, its rival’s competitive position, and so on.

Our decomposition highlights the various incentives that a firm faces when it decides

on a price. Some of these incentives may be judged to be predatory while others reflect

the pursuit of efficiency. In this way, our decomposition mirrors the common practice of

antitrust authorities to question the intent behind a business strategy.

We establish formally that certain terms in our decomposition map into the definitions of

predation due to Ordover & Willig (1981) and Cabral & Riordan (1997). At the same time,

however, our decomposition makes clear that there is much latitude in where exactly to draw

the line between predatory pricing and mere competition for efficiency on a learning curve.

2Edlin (2002) provides a comprehensive overview of the current law on predatory pricing. Bolton, Brodley
& Riordan (2000) and Edlin (2010) provide excellent reviews of the theoretical and empirical literature.
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Indeed, our decomposition lends itself to developing multiple alternative characterizations

of a firm’s predatory pricing incentives.

For each of theses characterizations, we show how to construct the corresponding sacrifice

test for predatory pricing. As Edlin & Farrell (2004) point out, one way to test for sacrifice

is to determine whether the derivative of a profit function that “incorporate[s] everything

except effects on competition” is positive at the price the firm has chosen (p. 510). A differ-

ent characterization of the firm’s predatory pricing incentives is tantamount to a different

operationalization of the everything-except-effects-on-competition profit function.

To further illustrate our decomposition and the multiple alternative sacrifice tests that

follow from it, we first link the various terms in the decomposition to key features of the

pricing decision. Then we gauge the consequences of applying sacrifice tests for industry

structure and dynamics by way of an illustrative example. As antitrust authorities flag and

prosecute an illegitimate profit sacrifice, they prevent a firm from pricing to achieve that

sacrifice. This amounts to forcing firms to ignore the predatory incentives in setting their

prices.

We avoid dealing with out-of-equilibrium adjustment processes and merely delineate what

may happen in the counterfactual equilibria once firms are forced to ignore the predatory

incentives. Because our goal is to show how to construct sacrifice tests in a modern industry-

dynamics framework, and not to run a conclusive “horse race” between antitrust policies that

are based on alternative characterizations of a firm’s predatory pricing incentives, we content

ourselves with presenting equilibria and counterfactuals for a particular parameterization of

the model. In practice, the impact of forcing firms to ignore the predatory incentives may

differ across parameterizations, so that an antitrust authority set to apply a sacrifice test is

well advised to first tailor the model to the institutional realities of the industry under study

and estimate the underlying primitives.

The remainder of this paper is organized as follows. Section 2 lays out the model. Sec-

tion 3 develops the decomposition of the equilibrium pricing condition and formalizes its

relationship with the definitions of predation due to Ordover & Willig (1981) and Cabral &

Riordan (1997). Section 4 uses the decomposition to develop multiple alternative charac-

terizations of a firm’s predatory pricing incentives and construct the corresponding sacrifice

tests. Section 5 exemplifies the link between our decomposition and equilibrium behavior

and the impact of forcing firms to ignore the predatory incentives in setting their prices.

Section 6 concludes.
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2 Model

As a special case of Besanko et al. (2013), we consider a discrete-time, infinite-horizon

dynamic stochastic game between two firms that compete in an industry characterized by

learning-by-doing. At any point in time, firm n ∈ {1, 2} is described by its state en ∈
{0, 1, . . . ,M}. A firm can be either an incumbent firm that actively produces or a potential

entrant. State en = 0 indicates a potential entrant. States en ∈ {1, . . . ,M} indicate the

cumulative experience or stock of know-how of an incumbent firm. By making a sale in the

current period, an incumbent firm can add to its stock of know-how and, through learning-

by-doing, lower its production cost in the subsequent period. Thus, competitive advantage

is determined endogenously in our model. At any point in time, the industry’s state is the

vector of firms’ states e = (e1, e2) ∈ {0, 1, . . . ,M}2.
In each period, firms first set prices and then decide on exit and entry. As illustrated in

Figure 1, during the price-setting phase, the industry’s state changes from e to e′ depending

on the outcome of pricing game between the incumbent firms. During the exit-entry phase,

the state then changes from e′ to e′′ depending on the exit decisions of the incumbent firm(s)

and the entry decisions of the potential entrant(s). The state at the end of the current period

finally becomes the state at the beginning of the subsequent period. We model entry as a

transition from state e′n = 0 to state e′′n = 1 and exit as a transition from state e′n ≥ 1 to

state e′′n = 0 so that the exit of an incumbent firm creates an opportunity for a potential

entrant to enter the industry.

Before analyzing firms’ decisions and the equilibrium of our dynamic stochastic game,

we describe the remaining primitives.

Demand. The industry draws customers from a large pool of potential buyers. One buyer

enters the market each period and purchases one unit of either one of the “inside goods”

that are offered by the incumbent firms at prices p = (p1, p2) or an “outside good” at an

exogenously given price p0. The probability that firm n makes the sale is given by the logit

specification:

Dn(p) =
exp(v−pn

σ )∑2
k=0 exp(

v−pk
σ )

=
exp(−pn

σ )∑2
k=0 exp(

−pk
σ )

,

where v is gross utility and σ > 0 is a scale parameter that governs the degree of product

differentiation. As σ → 0, goods become homogeneous. If firm n is a potential entrant, then

we set its price to infinity so that Dn(p) = 0.

Learning-by-doing and production cost. Incumbent firm n’s marginal cost of produc-

tion c(en) depends on its stock of know-how through a learning curve with a progress ratio
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price−setting phase exit−entry phase

duopoly: both firms are incumbents

 neither wins sale

 1 wins sale

 2 wins sale

 both stay in

 1 exits, 2 stays in

 1 stays in, 2 exits

 both exit

 both stay in

 1 exits, 2 stays in

 1 stays in, 2 exits

 both exit

 both stay in

 1 exits, 2 stays in

 1 stays in, 2 exits

 both exit

e e
′

e
′′

(e1, e2)

(e1, e2)

(e1 + 1, e2)

(e1, e2 + 1)

(e1, e2)

(0, e2)

(e1, 0)

(0, 0)

(e1 + 1, e2)

(0, e2)

(e1 + 1, 0)

(0, 0)

(e1, e2 + 1)

(0, e2 + 1)

(e1, 0)

(0, 0)

monopoly: firm 1 is incumbent, firm 2 is entrant

 neither wins sale

 1 wins sale

 1 stays in, 2 enters

 1 stays in, 2 stays out

 1 exits, 2 enters

 1 exits, 2 stays out

 1 stays in, 2 enters

 1 stays in, 2 stays out

 1 exits, 2 enters

 1 exits, 2 stays out

(e1, 0)

(e1, 0)

(e1 +1, 0)

(e1, 1)

(e1, 0)

(0, 1)

(0, 0)

(e1 +1, 1)

(e1 +1, 0)

(0, 1)

(0, 0)

empty: both firms are entrants

 neither wins sale

 both enter

 1 enters, 2 stays out

 1 stays out, 2 enters

 both stay out

(0, 0) (0, 0)

(1, 1)

(1, 0)

(0, 1)

(0, 0)

Figure 1: Possible state-to-state transitions.
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ρ ∈ [0, 1]:

c(en) =

{
κρlog2 en if 1 ≤ en < m,

κρlog2 m if m ≤ en ≤ M.

Because marginal cost decreases by 100(1− ρ)% as the stock of know-how doubles, a lower

progress ratio implies a steeper learning curve. The marginal cost for a firm without prior

experience, c(1), is κ > 0. The firm adds to its stock of know-how by making a sale.3

Once the firm reaches state m, the learning curve “bottoms out,” and there are no further

experience-based cost reductions.

Scrap value and setup cost. If incumbent firm n exits the industry, it receives a scrap

value Xn drawn from a symmetric triangular distribution FX(·) with support [X−∆X , X+

∆X ], where EX(Xn) = X and ∆X > 0 is a scale parameter. If potential entrant n enters the

industry, it incurs a setup cost Sn drawn from a symmetric triangular distribution FS(·) with
support [S−∆S , S+∆S ], where ES(Sn) = S and ∆S > 0 is a scale parameter. Scrap values

and setup costs are independently and identically distributed across firms and periods, and

their realization is observed by the firm but not its rival.

2.1 Firms’ decisions

To analyze the pricing decision pn(e) of incumbent firm n, the exit decision ϕn(e
′, Xn) ∈

{0, 1} of incumbent firm n with scrap value Xn, and the entry decision ϕn(e
′, Sn) ∈ {0, 1}

of potential entrant n with setup cost Sn, we work backwards from the exit-entry phase

to the price-setting phase. Because scrap values and setup costs are private to a firm, its

rival remains uncertain about the firm’s decision. Combining exit and entry decisions, we

let ϕn(e
′) denote the probability, as viewed from the perspective of its rival, that firm n

decides not to operate in state e′: If en ̸= 0 so that firm n is an incumbent, then ϕn(e
′) =

EX [ϕn(e
′, Xn)] is the probability of exiting; if e′n = 0 so that firm n is an entrant, then

ϕn(e
′) = ES [ϕn(e

′, Sn)] is the probability of not entering.

We use Vn(e) to denote the expected net present value (NPV) of future cash flows to

firm n in state e at the beginning of the period and Un(e
′) to denote the expected NPV

of future cash flows to firm n in state e′ after pricing decisions but before exit and entry

decisions are made. The price-setting phase determines the value function Vn(e) along with

the policy function pn(e); the exit-entry phase determines the value function Un(e
′) along

with the policy function ϕn(e
′).

3We obviously have to ensure en ≤ M . To simplify the exposition we abstract from boundary issues in
what follows.
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Exit decision of incumbent firm. To simplify the exposition we focus on firm 1; the

derivations for firm 2 are analogous. If incumbent firm 1 exits the industry, it receives the

scrap value X1 in the current period and perishes. If it does not exit and remains a going

concern in the subsequent period, its expected NPV is

X̂1(e
′) = β

[
V1(e

′)(1− ϕ2(e
′)) + V1(e

′
1, 0)ϕ2(e

′)
]
,

where β ∈ [0, 1) is the discount factor. Incumbent firm 1’s decision to exit the industry in

state e′ is thus ϕ1(e
′, X1) = 1

[
X1 ≥ X̂1(e

′)
]
, where 1 [·] is the indicator function and X̂1(e

′)

the critical level of the scrap value above which exit occurs. The probability of incumbent

firm 1 exiting is ϕ1(e
′) = 1 − FX(X̂1(e

′)). It follows that before incumbent firm 1 observes

a particular draw of the scrap value, its expected NPV is given by the Bellman equation

U1(e
′) = EX

[
max

{
X̂1(e

′), X1

}]
= (1− ϕ1(e

′))β
[
V1(e

′)(1− ϕ2(e
′)) + V1(e

′
1, 0)ϕ2(e

′)
]
+ ϕ1(e

′)EX

[
X1|X1 ≥ X̂1(e

′)
]
, (1)

where EX

[
X1|X1 ≥ X̂1(e

′)
]
is the expectation of the scrap value conditional on exiting the

industry.

Entry decision of potential entrant. If potential entrant 1 does not enter the industry,

it perishes. If it enters and becomes an incumbent firm (without prior experience) in the

subsequent period, its expected NPV is

Ŝ1(e
′) = β

[
V1(1, e

′
2)(1− ϕ2(e

′)) + V1(1, 0)ϕ2(e
′)
]
.

In addition, it incurs the setup cost S1 in the current period. Potential entrant 1’s decision

to not enter the industry in state e′ is thus ϕ1(e
′, S1) = 1

[
S1 ≥ Ŝ1(e

′)
]
, where Ŝ1(e

′) is

the critical level of the setup cost. The probability of potential entrant 1 not entering is

ϕ1(e
′) = 1 − FS(Ŝ1(e

′)) and before potential entrant 1 observes a particular draw of the

setup cost, its expected NPV is given by the Bellman equation

U1(e
′) = ES

[
max

{
Ŝ1(e

′)− S1, 0
}]

= (1− ϕ1(e
′))

{
β[V1(1, e

′
2)(1− ϕ2(e

′)) + V1(1, 0)ϕ2(e
′)]− ES

[
S1|S1 ≤ Ŝ1(e

′)
]}

, (2)
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where ES

[
S1|S1 ≤ Ŝ1(e

′)
]
is the expectation of the setup cost conditional on entering the

industry.4

Pricing decision of incumbent firm. In the price-setting phase, the expected NPV of

incumbent firm 1 is

V1(e) = max
p1

(p1 − c(e1))D1(p1, p2(e)) +D0(p1, p2(e))U1(e)

+D1(p1, p2(e))U1(e1 + 1, e2) +D2(p1, p2(e))U1(e1, e2 + 1). (3)

BecauseD0(p) = 1−D1(p)−D2(p), we can equivalently formulate the maximization problem

on the right-hand side of the Bellman equation (3) as maxp1 Π1(p1, p2(e), e), where

Π1(p1, p2(e), e) = (p1 − c(e1))D1(p1, p2(e)) + U1(e)

+D1(p1, p2(e)) [U1(e1 + 1, e2)− U1(e)]−D2(p1, p2(e)) [U1(e)− U1(e1, e2 + 1)] (4)

is the long-run profit of incumbent firm 1. Because Π1(p1, p2(e), e) is strictly quasiconcave

in p1 (given p2(e) and e), the pricing decision p1(e) is uniquely determined by the first-order

condition

mr1(p1, p2(e))− c(e1)+ [U1(e1 + 1, e2)− U1(e)]+Υ(p2(e)) [U1(e)− U1(e1, e2 + 1)] = 0, (5)

where mr1(p1, p2(e)) = p1 − σ
1−D1(p1,p2(e))

is the marginal revenue to incumbent firm 1 or

what Edlin (2010) calls inclusive price5 and Υ(p2(e)) =
D2(p1,p2(e))

1−D1(p1,p2(e))
=

exp
(
− p2(e)

σ

)
exp(− p0

σ )+exp
(
− p2(e)

σ

)
is the probability of firm 2 making a sale conditional on firm 1 not making a sale.

As discussed in Besanko et al. (2013), the pricing decision impounds two distinct goals

beyond short-run profit: the advantage-building motive [U1(e1 + 1, e2)− U1(e)] and the

advantage-denying motive [U1(e)− U1(e1, e2 + 1)]. The advantage-building motive is the

reward that the firm receives by winning a sale and moving down its learning curve. The

advantage-denying motive is the penalty that the firm avoids by preventing its rival from

winning the sale and moving down its learning curve. The advantage-building motive thus

reflects the firm’s marginal benefit from becoming a more formidable competitor in the future

while the advantage-denying motive reflects the firm’s marginal benefit from preventing its

rival from becoming a more formidable competitor. Because it encompasses both the short

4See the Online Appendix to Besanko et al. (2013) for closed-form expressions for EX

[
X1|X1 ≥ X̂1(e

′)
]

in equation (1) and ES

[
S1|S1 ≤ Ŝ1(e

′)
]
in equation (2).

5mr1(p1, p2(e)) is marginal revenue with respect to quantity, i.e., the probability of making the sale,
written as a function of price. See the Online Appendix to Besanko et al. (2013) for more details.
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run and the long run, the pricing decision on our model is akin to an investment decision.

2.2 Equilibrium

Because our demand and cost specification is symmetric, we restrict ourselves to symmetric

Markov perfect equilibria. Existence of a symmetric Markov perfect equilibrium in pure

strategies follows from the arguments in Doraszelski & Satterthwaite (2010). In a symmetric

equilibrium, the decisions taken by firm 2 in state e = (e1, e2) are identical to the decisions

taken by firm 1 in state (e2, e1). It is therefore sufficient to determine the value and policy

functions of firm 1.

3 Decomposition

To determine what constitutes an illegitimate profit sacrifice and isolate a firm’s predatory

pricing incentives, we go beyond Besanko et al. (2013) and decompose the equilibrium pricing

condition (5) with even more granularity by writing it as

mr1(p1(e), p2(e))− c(e1) +

[
5∑

k=1

Γk
1(e)

]
+Υ(p2(e))

[
4∑

k=1

Θk
1(e)

]
= 0. (6)

∑5
k=1 Γ

k
1(e) decomposes the advantage-building motive [U1(e1 + 1, e2)− U1(e)] and

∑4
k=1Θ

k
1(e)

the advantage-denying motive [U1(e)− U1(e1, e2 + 1)]. Each term in this decomposition has

a distinct economic interpretation that we describe below.6

Advantage building. The decomposed advantage-building motives summarized in Table

1 are the various sources of marginal benefit to the firm from winning the sale in the current

period and moving further down its learning curve.

Baseline advantage-building motive:

Γ1
1(e) = (1− ϕ1(e))β [V1(e1 + 1, e2)− V1(e)] .

The baseline advantage-building motive is the firm’s marginal benefit from an improvement

in its competitive position, assuming that its rival does not exit in the current period. It

captures both the lower marginal cost and any future advantages (winning the sale, exit of

rival, etc.) that stem from this lower cost.

6The decomposition applies to an industry with two incumbent firms in state e ≥ (1, 1) and we focus on
firm 1. We use equation (1) to express U1(e) in terms of V1(e). Because the terms Γk

1(e) and Θk
1(e) are

typically positive, we refer to them as marginal benefits. To streamline the exposition, we further presume
monotonicity of the value and policy functions. For some parameterizations these assumptions fail.
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advantage-building motives if the firm wins the sale and moves further down its learn-
ing curve, then the firm. . .

Γ1
1(e) baseline . . . improves its competitive position within the duopoly

Γ2
1(e) exit . . . increases its rival’s exit probability

Γ3
1(e) survival . . . decreases its exit probability

Γ4
1(e) scrap value . . . increases its expected scrap value

Γ5
1(e) market structure . . . gains from an improved competitive position as a mo-

nopolist versus as a duopolist

Table 1: Decomposed advantage-building motives.

Advantage-building/exit motive:

Γ2
1(e) = (1− ϕ1(e)) [ϕ2(e1 + 1, e2)− ϕ2(e)]β[V1(e1 + 1, 0)− V1(e1 + 1, e2)].

The advantage-building/exit motive is the firm’s marginal benefit from increasing its rival’s

exit probability from ϕ2(e) to ϕ2(e1 + 1, e2).

Advantage-building/survival motive:

Γ3
1(e) = [ϕ1(e)− ϕ1(e1 + 1, e2)]β [ϕ2(e1 + 1, e2)V1(e1 + 1, 0) + (1− ϕ2(e1 + 1, e2))V1(e1 + 1, e2)] .

The advantage-building/survival motive is the firm’s marginal benefit from decreasing its

exit probability from ϕ1(e) to ϕ1(e1 + 1, e2).

Advantage-building/scrap value motive:

Γ4
1(e) = ϕ1(e1 + 1, e2)EX

[
X1|X1 ≥ X̂1(e1 + 1, e2)

]
− ϕ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
.

The advantage-building/scrap value motive is the firm’s marginal benefit from increasing its

scrap value in expectation from ϕ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
to ϕ1(e1+1, e2)EX

[
X1|X1 ≥ X̂1(e1 + 1, e2)

]
.

Advantage-building/market structure motive:

Γ5
1(e) = (1− ϕ1(e))ϕ2(e)β {[V1(e1 + 1, 0)− V1(e1, 0)]− [V1(e1 + 1, e2)− V1(e)]} .

The advantage-building/market structure motive is the firm’s marginal benefit from an im-

provement in its competitive position as a monopolist versus as a duopolist.

Advantage denying. The decomposed advantage-denying motives summarized in Table

2 are the various sources of marginal benefit to the firm from winning the sale in the current

period and, by doing so, preventing its rival from moving further down its learning curve.

The decomposed advantage-denying motives differ from the decomposed advantage-building
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advantage-denying motives if the firm wins the sale and prevents its rival from moving
further down its learning curve, then the firm . . .

Θ1
1(e) baseline . . . prevents its rival from improving its competitive posi-

tion within the duopoly
Θ2

1(e) exit . . . prevents its rival’s exit probability from decreasing
Θ3

1(e) survival . . . prevents its exit probability from increasing
Θ4

1(e) scrap value . . . prevents its expected scrap value from decreasing

Table 2: Decomposed advantage-denying motives.

motives in that they do not focus on the firm becoming more efficient but rather on the firm

preventing its rival from becoming more efficient.

Baseline advantage-denying motive:

Θ1
1(e) = (1− ϕ1(e))(1− ϕ2(e1, e2 + 1))β [V1(e)− V1(e1, e2 + 1)] .

The baseline advantage-denying motive is firm’s the marginal benefit from preventing an

improvement in its rival’s competitive position, assuming its rival does not exit in the current

period.

Advantage-denying/exit motive:

Θ2
1(e) = (1− ϕ1(e))[ϕ2(e)− ϕ2(e1, e2 + 1)]β[V1(e1, 0)− V1(e)].

The advantage-denying/exit motive is the firm’s marginal benefit from preventing its rival’s

exit probability from decreasing from ϕ2(e) to ϕ2(e1, e2 + 1).

Advantage-denying/survival motive:

Θ3
1(e) = [ϕ1(e1, e2 + 1)− ϕ1(e)]β [ϕ2(e1, e2 + 1)V1(e1, 0) + (1− ϕ2(e1, e2 + 1))V1(e1, e2 + 1)] .

The advantage-denying/survival motive is the firm’s marginal benefit from preventing its

exit probability from increasing from ϕ1(e) to ϕ1(e1, e2 + 1).

Advantage-denying/scrap value motive:

Θ4
1(e) = ϕ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
− ϕ1(e1, e2 + 1)EX

[
X1|X1 ≥ X̂1(e1, e2 + 1)

]
.

The advantage-denying/scrap value motive is the firm’s marginal benefit from preventing its

scrap value from decreasing in expectation from ϕ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
to ϕ1(e1, e2 +

1)EX

[
X1|X1 ≥ X̂1(e1, e2 + 1)

]
.
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3.1 Economic definitions of predation

The decomposition in (6) relates to economic definitions of predation formulated in the

existing literature.

Cabral & Riordan (1997). Cabral & Riordan (1997) call “an action predatory if (1) a

different action would increase the probability that rivals remain viable and (2) the different

action would be more profitable under the counterfactual hypothesis that the rival’s viability

were unaffected” (p. 160). In the context of predatory pricing, it is natural to interpret “a

different action” as a higher price p̃1 > p1(e). To port the Cabral & Riordan definition from

their two-period model to our infinite-horizon dynamic stochastic game, we take the “rival’s

viability” to refer to the probability that the rival exits the industry in the current period.

Finally, we interpret “the different action would be more profitable” in the spirit of Markov

perfection to mean that by a setting a higher price in the current period but returning to

equilibrium play from the subsequent period onward, the firm can affect the evolution of the

state to increase its expected NPV if it believed, counterfactually, that the probability that

the rival exits the industry in the current period is fixed at ϕ2(e).

With these interpretations, Proposition 1 formalizes the relationship between the Cabral

& Riordan definition of predation and our decomposition (6):

Proposition 1 Consider an industry with two incumbent firms in state e ≥ (1, 1). Assume

ϕ1(e) < 1, V1(e1, 0) > V1(e), and V1(e1 + 1, 0) > V1(e1 + 1, e2), i.e., exit by the firm is

less than certain and the expected NPV of a monopolist exceeds that of a duopolist. (a) If

Γ2
1(e) ≥ 0 and Θ2

1(e) ≥ 0, with at least one of these inequalities being strict, and

Γ2
1(e) +

[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

]
+Υ(p2(e))

[[
Θ1

1(e)− Θ1
1(e)

∣∣
ϕ2=ϕ2(e)

]
+Θ2

1(e) +
[
Θ3

1(e)− Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

]]
> 0, (7)

then the firm’s equilibrium price p1(e) in state e is predatory according to the Cabral &

Riordan (1997) definition.7 (b) If p1(e) is predatory according to the Cabral & Riordan

definition, then Γ2
1(e) > 0 or Θ2

1(e) > 0 and inequality (7) holds.

Proof. See Appendix.

Ordover & Willig (1981). According to Ordover & Willig (1981), “[p]redatory behavior

is a response to a rival that sacrifices part of the profit that could be earned under competitive

7The notation ·|ϕ2=ϕ2(e)
means that we evaluate the relevant term under the assumption that ϕ2(e) =

ϕ2(e1 + 1, e2) = ϕ2(e1, e2 + 1) so that the probability that the rival exits the industry in the current period
is indeed fixed at ϕ2(e).
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circumstances were the rival to remain viable, in order to induce exit and gain consequent

additional monopoly profit” (pp. 9–10). As Cabral & Riordan (1997) observe, the premise

in the Ordover & Willig definition is that the rival is viable with certainty.8 We have:

Proposition 2 Consider an industry with two incumbent firms in state e ≥ (1, 1). Assume

ϕ1(e) < 1, V1(e1, 0) > V1(e), and V1(e1 + 1, 0) > V1(e1 + 1, e2), i.e., exit by the firm is

less than certain and the expected NPV of a monopolist exceeds that of a duopolist. (a) If

Γ2
1(e) ≥ 0 and Θ2

1(e) ≥ 0, with at least one of these inequalities being strict, and

Γ2
1(e) +

[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=0

]
+ Γ5

1(e)

+Υ(p2(e))
[[
Θ1

1(e)− Θ1
1(e)

∣∣
ϕ2=0

]
+Θ2

1(e) +
[
Θ3

1(e)− Θ3
1(e)

∣∣
ϕ2=0

]]
> 0, (8)

then the firm’s equilibrium price p1(e) in state e is predatory according to the Ordover

& Willig (1981) definition. (b) If p1(e) is predatory according to the Ordover & Willig

definition, then Γ2
1(e) > 0 or Θ2

1(e) > 0 and inequality (8) holds.

The proof follows the same logic as the proof of Proposition 1 and is therefore omitted.

4 Sacrifice tests

To detect the presence of predatory pricing, antitrust authorities routinely ask whether a

firm sacrifices current profit in exchange for the expectation of higher future profit following

the exit of its rival. Sacrifice tests thus view predation as an “investment in monopoly profit”

(Bork 1978).9

As pointed out by Edlin & Farrell (2004), one way to test for sacrifice is to determine

whether the derivative of a suitably defined profit function is positive at the price that the

firm has chosen, which indicates that the chosen price is less than the price that maximizes

profit. Moreover, “[i]n principle this profit function should incorporate everything except

effects on competition” (p. 510, our italics).

To construct sacrifice tests, we therefore partition the profit function Π1(p1, p2(e), e) in

our model into an everything-except-effects-on-competition (EEEC) profit function Π0
1(p1, p2(e), e)

8This observation indeed motivates Cabral & Riordan (1997) to propose their own definition: “Is the
appropriate counterfactual hypothesis that firm B remain viable with probability one? We don’t think so.
Taking into account that firm B exits for exogenous reasons (i.e. a high realization of [the scrap value])
hardly means that firm A intends to drive firm B from the market” (p. 160).

9Sacrifice tests are closely related to the “no economic sense” test that holds that “conduct is not ex-
clusionary or predatory unless it would make no economic sense for the defendant but for the tendency to
eliminate or lessen competition” (Werden 2006, p. 417). Both have been criticized for “not generally [being]
a reliable indicator of the impact of allegedly exclusionary conduct on consumer welfare—the primary focus
of antitrust laws” (Salop 2006, p. 313).
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and a remainder Ω1(p1, p2(e), e) = Π1(p1, p2(e), e) − Π0
1(p1, p2(e), e) that by definition re-

flects the effects on competition. Because ∂Π1(p1(e),p2(e),e)
∂p1

= 0 in equilibrium, the sacrifice

test
∂Π0

1(p1(e),p2(e),e)
∂p1

> 0 is equivalent to

−∂Ω1(p1(e), p2(e), e)

∂p1
=

∂Ω1(p1(e), p2(e), e)

∂(−p1)
> 0. (9)

∂Ω1(p1(e),p2(e),e)
∂(−p1)

is the marginal return to a price cut in the current period due to changes

in the competitive environment. If profit is sacrificed, then inequality (9) tells us that

these changes in the competitive environment are to the firm’s advantage. In this sense,
∂Ω1(p1(e),p2(e),e)

∂(−p1)
is the marginal return to the “investment in monopoly profit” and thus a

natural measure of the firm’s predatory pricing incentives.

The specification of the EEEC profit function determines what constitutes an illegit-

imate profit sacrifice—and thus predatory pricing—and there are as many sacrifice tests

as there are possible specifications of the EEEC profit function. Because by construction

Ω1(p1, p2(e), e) = Π1(p1, p2(e), e) − Π0
1(p1, p2(e), e), specifying an EEEC profit function is

equivalent to specifying the firm’s predatory pricing incentives. Propositions 1 and 2 suggest

starting from the predatory incentives to construct the corresponding EEEC profit function

and sacrifice test. More generally, our decomposition (6) highlights the various incentives

that a firm faces when it decides on a price. While some of these incentives may be judged to

be predatory, others reflect the pursuit of efficiency. Using the decomposition, we therefore

develop multiple alternative characterizations of a firm’s predatory pricing incentives and,

for each of theses characterizations, we construct the corresponding EEEC profit function

and sacrifice test.

Short-run profit. In the quote above, Edlin & Farrell (2004) go on to point out that “in

practice sacrifice tests often use short-run data, and we will often follow the conventional

shorthand of calling [this profit function] short-run profit” (p. 510). Equating predatory

pricing with a failure to maximize short-run profit implies that the firm’s predatory pricing

incentives are its dynamic incentives in their entirety or, in other words, all decomposed

advantage-building and advantage-denying motives. This then gives us our first definition

of predatory incentives, which is identical to Definition 1 in Besanko et al. (2013):

Definition 1 (short-run profit) The firm’s predatory pricing incentives are [U1(e1 + 1, e2)− U1(e)]+

Υ(p2(e)) [U1(e)− U1(e1, e2 + 1)] =
[∑5

k=1 Γ
k
1(e)

]
+Υ(p2(e))

[∑4
k=1Θ

k
1(e)

]
.

The EEEC profit function corresponding to Definition 1 is

Π0,SRP
1 (p1, p2(e), e) = (p1 − c1(e1))D1(p1, p2(e)).
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It follows from our decomposition (6) that
∂ΩSRP

1 (p1(e),p2(e),e)
∂(−p1)

> 0 if and only if
[∑5

k=1 Γ
k
1(e)

]
+

Υ(p2(e))
[∑4

k=1Θ
k
1(e)

]
> 0.

The sacrifice test based on Definition 1 is equivalent to the inclusive pricemr1(p1(e), p2(e))

being less than short-run marginal cost c(e1).
10 Becausemr1(p1(e), p2(e)) → p1(e) as σ → 0,

in an industry with very weak product differentiation it is also nearly equivalent to the clas-

sic Areeda & Turner (1975) test that equates predatory pricing with below-cost pricing and

underpins the current Brooke Group standard for predatory pricing in the U.S.

Dynamic competitive vacuum. By equating predatory pricing with a failure to max-

imize short-run profit, Definition 1 may be too broad for a dynamic environment like ours

in which a firm has an incentive to price aggressively in order to realize experience-based

cost reductions. Taking the resulting intertemporal trade-off into account, Farrell & Katz

(2005) view an action as predatory only if it weakens the rival (see, in particular, p. 219

and p. 226). According to Farrell & Katz (2005), a firm should behave as if it were oper-

ating in a “dynamic competitive vacuum” by taking as given the competitive position of its

rival in the current period but ignoring that its current price can affect the evolution of its

rival’s competitive position beyond the current period. Our second definition of predatory

incentives thus comprises all decomposed advantage-denying motives:

Definition 2 (dynamic competitive vacuum) The firm’s predatory pricing incentives

are [U1(e)− U1(e1, e2 + 1)] =
[∑4

k=1Θ
k
1(e)

]
.

Definition 2 is identical to Definition 2 in Besanko et al. (2013). The corresponding EEEC

profit function is

Π0,DCV
1 (p1, p2(e), e) = (p1 − c(e1))D1(p1, p2(e))

+U1(e) +D1(p1, p2(e)) [U1(e1 + 1, e2)− U1(e)] ,

where we assume that from the subsequent period onward, pla y returns to equilibrium. To

us, this best captures the idea that the firm is sacrificing something now in exchange for a

later improvement in the competitive environment. It follows from our decomposition (6)

that
∂ΩDCV

1 (p1(e),p2(e),e)
∂(−p1)

) > 0 if and only if
[∑4

k=1Θ
k
1(e)

]
> 0.

The sacrifice test based on Definition 2 is equivalent to the inclusive pricemr1(p1(e), p2(e))

being less than long-run marginal cost c(e1) −
[∑5

k=1 Γ
k
1(e)

]
. Note that a lower bound on

long-run marginal cost c(e1)−
[∑5

k=1 Γ
k
1(e)

]
is out-of-pocket cost at the bottom of the learn-

ing curve c(m) (Spence 1981). Hence, if mr1(p1(e), p2(e)) < c(m), then mr1(p1(e), p2(e)) <

10Edlin (2010) interprets the arguments of the U.S. Department of Justice in a predatory pricing case
against American Airlines in the mid 1990s as implicitly advocating such a sacrifice test. Edlin & Farrell
(2004) and Snider (2008) provide detailed analyses of this case.
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c(e1)−
[∑5

k=1 Γ
k
1(e)

]
. This provides a one-way test for sacrifice that can be operationalized

given some basic knowledge of demand and cost.

Rival exit in current period. According to Definitions 1 and 2, the marginal return to a

price cut in the current period may be positive not because the rival exits the industry in the

current period but because the rival exits in some future period. The predatory incentives

therefore extend to the possibility that the rival exits in some future period because the

firm improves its competitive position in the current period. The economic definitions of

predation formulated in the existing literature instead focus more narrowly on the immediate

impact of a price cut on rival exit. Our remaining definitions of the firm’s predatory pricing

incentives embrace this focus.

In light of Proposition 2 we have:

Definition 3 (Ordover & Willig) The firm’s predatory pricing incentives are

Γ2
1(e) +

[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=0

]
+ Γ5

1(e)

+Υ(p2(e))
[[
Θ1

1(e)− Θ1
1(e)

∣∣
ϕ2=0

]
+Θ2

1(e) +
[
Θ3

1(e)− Θ3
1(e)

∣∣
ϕ2=0

]]
.

The Ordover & Willig definition of predation implies

Π0,OW
1 (p1, p2(e), e) = Π1(p1, p2(e), e)|ϕ2=0 ,

so that the EEEC profit function is the profit function under the counterfactual presumption

that the probability that the rival exits the industry in the current period is zero.

In light of Proposition 1 we further have:

Definition 4 (Cabral & Riordan) The firm’s predatory pricing incentives are

Γ2
1(e) +

[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

]
+Υ(p2(e))

[[
Θ1

1(e)− Θ1
1(e)

∣∣
ϕ2=ϕ2(e)

]
+Θ2

1(e) +
[
Θ3

1(e)− Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

]]
.

The Cabral & Riordan definition of predation implies

Π0,CR
1 (p1, p2(e), e) = Π1(p1, p2(e), e)|ϕ2=ϕ2(e)

.

Our remaining definition of the firm’s predatory pricing incentives comes from partition-

ing the predatory incentives in Definitions 3 and 4 more finely by maintaining that the truly

exclusionary effects on competition are the ones aimed at inducing exit by the firm winning
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the sale and moving further down its learning curve as well as by the firm preventing its

rival from winning the sale and moving further down its learning curve:

Definition 5 (rival exit) The firm’s predatory pricing incentives are Γ2
1(e)+Υ(p2(e))Θ

2
1(e).

Definition 5 is identical to Definition 3 in Besanko et al. (2013). The corresponding EEEC

profit function is

Π0,REX
1 (p1, p2(e), e) = (p1 − c(e1))D1(p1, p2(e))

+U1(e) +D1(p1, p2(e))

∑
k ̸=2

Γk
1(e)

+D2(p1, p2(e))

∑
k ̸=2

Θk
1(e)

 .

It follows from our decomposition (6) that
∂ΩREX

1 (p1(e),p2(e),e)
∂(−p1)

) > 0 if and only if Γ2
1(e) +

Υ(p2(e))Θ
2
1(e) > 0.

5 Illustrative example

To illustrate the types of behavior that can arise in our model, we compute the Markov

perfect equilibria for the baseline parameterization in Table 1 in Besanko et al. (2013).

Although this parameterization does not correspond to any specific industry, it is empirically

plausible and in no way extreme. At the baseline parameterization there are three equilibria.

For two of these three equilibria, Figure 2 shows the pricing decision of firm 1, the non-

operating probability of firm 2, and the time path of the probability distribution over industry

structures (empty, monopoly, and duopoly). The third equilibrium is essentially intermediate

between the two shown in Figure 2 and is therefore omitted.

The upper panels of Figure 2 illustrate what is called an aggressive equilibrium in Besanko

et al. (2013). As can be seen in the upper left panel, there is a deep well in the pricing decision

in state (1, 1) with p1(1, 1) = −34.78. In the well, the firms engage in a preemption battle to

determine which will be first to move down from the top of its learning curve. There is also a

deep trench along the e1-axis, with p1(e1, 1) ranging from 0.08 to 1.24 for e1 ∈ {2, . . . , 30}.11

A trench is a price war that the leader (firm 1) wages against the follower (firm 2), or an

endogenous mobility barrier in the sense of Caves & Porter (1977). In the trench, the follower

exits the industry with a positive probability of ϕ2(1, e2) = 0.22 for e2 ∈ {2, . . . , 30} as can

be seen in the upper middle panel. As long as the follower does not win a sale, it remains in

this “exit zone.” If the follower exits, the leader raises its price and the industry becomes an

11Because prices are strategic complements, there is also a shallow trench along the e2-axis with p1(1, e2)
ranging from 3.63 to 4.90 for e2 ∈ {2, . . . , 30}.
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Figure 2: Pricing decision of firm 1 (left panels), non-operating probability of firm 2 (middle
panels), and time path of probability distribution over industry structures, starting from
e = (1, 1) at T = 0 (right panels). Aggressive (upper panels) and accommodative (lower
panels) equilibria.
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entrenched monopoly.12 This sequence of events resembles conventional notions of predatory

pricing. On the other hand, the industry evolves into a mature duopoly if the follower wins

a sale while in the midst of the price war. However, this is unlikely to happen and, as can

be seen in the upper right panel, a mature duopoly is much less likely than an entrenched

monopoly.13

The lower panels of Figure 2 are typical for an accommodative equilibrium. There is a

shallow well in state (1, 1) with p1(1, 1) = 5.05 as the lower left panel shows. Absent mobility

barriers in the form of trenches, however, any competitive advantage is temporary and the

industry evolves into a mature duopoly as the lower right panel shows.

The panel labeled “MPE” in Table 3 illustrates industry structure, conduct, and perfor-

mance implied by the equilibria.14 The expected long-run Herfindahl index HHI∞ reflects

that the industry is substantially more likely to be monopolized under the aggressive equi-

librium than under the accommodative equilibrium. In the entrenched monopoly prices are

higher as can be seen from the expected long-run average price p∞. Finally, consumer and

total surplus are lower under the aggressive equilibrium than under the accommodative equi-

librium. The difference between the equilibria is smaller for expected discounted consumer

surplus CSNPV than for expected long-run consumer surplus CS∞ because the former met-

ric accounts for the competition for the market in the short run that manifests itself in the

deep well and trench of the aggressive equilibrium and mitigates the lack of competition in

the market in the long run.

In sum, predation-like behavior arises in aggressive equilibria. Aggressive equilibria often

coexist with accommodative equilibria involving much less aggressive pricing. Aggressive

equilibria involve more competition in the short run than accommodative equilibria but less

competition in the long run.

5.1 Predation-like behavior and sacrifice tests

Our decomposition sheds light on the origins of the wells and trenches that are part and

parcel of predation-like behavior and competition for the market. The upper panels of Table

12In this particular equilibrium, ϕ2(e1, 0) = 1.00 for e1 ∈ {2, . . . , 30}, so that a potential entrant does not
enter if the incumbent firm has moved down from the top of its learning curve.

13Following Cabral & Riordan (1994), we refer to an incumbent firm in state en ≥ m as a mature firm and
an industry in state e ≥ (m,m) as a mature duopoly. In the same spirit, we refer to an incumbent firm in
state en = 1 as an emerging firm and an industry in state (1, 1) as an emerging duopoly.

14We use the policy functions p1 and ϕ1 for a particular equilibrium to construct the matrix of state-
to-state transition probabilities that characterizes the Markov process of industry dynamics. From this, we
compute the transient distribution over states in period T starting from state (1, 1) in period 0. Depending
on T , the transient distributions can capture short-run or long-run (steady-state) dynamics, and we think of
period 1000 as the long run. To succinctly describe the equilibrium, we finally use the transient distributions
to compute six metrics of industry structure, conduct, and performance. See Section III of Besanko et al.
(2013) for details.
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HHI∞ p∞ CS∞ TS∞ CSNPV TSNPV

MPE aggressive 0.96 8.26 1.99 6.09 104.18 110.33
intermediate 0.58 5.74 4.89 7.22 111.18 119.12
accommodative 0.50 5.24 5.46 7.44 109.07 120.14

SRP accommodative 0.50 5.24 5.46 7.44 59.72 106.07

DCV accommodative 0.50 5.24 5.46 7.44 102.10 119.70

OW aggressive 0.95 8.19 2.07 6.12 98.11 110.64
intermediate 0.63 6.07 4.51 7.07 109.79 118.19
accommodative 0.50 5.24 5.46 7.44 109.07 120.14

CR aggressive 0.92 8.04 2.24 6.18 98.84 111.25
intermediate 0.64 6.17 4.39 7.02 109.17 117.87
accommodative 0.50 5.24 5.46 7.44 109.07 120.14

REX aggressive 0.95 8.19 2.07 6.12 98.11 110.64
intermediate 0.62 6.06 4.52 7.07 109.83 118.21
accommodative 0.50 5.24 5.46 7.44 109.07 120.14

Table 3: Industry structure, conduct, and performance. Aggressive, intermediate, and ac-
commodative equilibria without conduct restriction (panel labeled “MPE”) and with con-
duct restriction according to Definition 1 (panel labeled “SRP”), Definition 2 (panel labeled
“DCV”), Definition 3 (panel labeled “OW”), Definition 4 (panel labeled “CR”), and Defi-
nition 5 (panel labeled “REX”) .

4 illustrate the decomposition (6) for the aggressive equilibrium for a set of states where firm

2 is at the top of the learning curve. The competition for the market in the well in state

(1, 1) is driven mostly by the baseline advantage-building motive Γ1
1(1, 1) and the advantage-

building/exit motive Γ2
1(1, 1). In contrast, the competition for the market in the trench in

states (e1, 1) for e1 ∈ {2, . . . , 30} is driven mostly by the baseline advantage-denying motive

Θ1
1(e1, 1) and the advantage-denying/exit motive Θ2

1(e1, 1). The predation-like behavior

in the trench thus arises not because by becoming more efficient the leader increases the

probability that the follower exits the industry but because by preventing the follower from

becoming more efficient the leader keeps the follower in the trench and thus prone to exit.

Another way to put this is that the leader makes the cost to the follower of attempting to

move down its learning curve comparable to the benefit to the follower of doing so, so that

exit is in the follower’s interest. Viewed this way, the aggressive pricing in the trench can be

viewed as raising the rival’s cost of remaining in the industry. The decomposed advantage-

denying motives remain in effect in states (e1, 1) for e1 ∈ {16, . . . , 30} where the leader has

exhausted all learning economies.

As can be seen in lower panels of Table 4 for a set of states where firm 2 has already

gained some traction, neither the advantage-building nor the advantage-denying motives are

very large. To the extent that the price is below the static optimum this is due mostly to
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the baseline advantage-building motive Γ1
1(e1, 4) for e1 ∈ {1, . . . , 30}.

Table 5 complements Table 4 by illustrating the decomposition (6) for the accommoda-

tive equilibrium. The pricing decision is driven by the advantage-building/baseline and

advantage-denying/baseline motives.

The various definitions of predatory incentives in Section 4 are ordered to hone in on

ever fewer terms in our decomposition (6). Intuitively, they thus become narrower. The

right panels of Tables 4 and 5 illustrate this point at the example of the aggressive and,

respectively, accommodative equilibrium by marking states in which the predatory incentives

according to a particular definition are positive. As noted above, the predatory incentives

are positive if and only if the derivative of the EEEC profit function with respect to price is

positive; hence, in the marked states firm 1 engages in an illegitimate profit sacrifice.

All sacrifice tests indicate predatory pricing in the deep well and trench of the aggressive

equilibrium. The sacrifice tests according to Definitions 1 and 2 continue to indicate preda-

tory pricing in other states involving much less aggressive pricing, such as state (e1, 4) for

e1 ∈ {5, . . . , 30} in which firm 1 charges a price above its marginal cost, but those according

to Definitions 3–5 do not. We see the same pattern for the accommodative equilibrium.

5.2 Sacrifice tests and conduct restrictions

As antitrust authorities flag and prosecute an illegitimate profit sacrifice, they prevent a

firm from pricing to achieve that sacrifice. In this way, applying a sacrifice test is akin to

imposing a conduct restriction. The various definitions of predatory incentives in Section 4

indeed restrict the range of the firm’s price, e.g., Definition 1 prohibits the inclusive price,

and thus also the actual price, from being less than marginal cost.

To gauge the consequences of applying a sacrifice test for industry structure and dynam-

ics, we formalize a conduct restriction as a constraint Ξ1(p1, p2(e), e) = 0 on the maximiza-

tion problem on the right-hand side of the Bellman equation (3) that the firm solves in the

price-setting phase. We form the constraint by rewriting our decomposition (6) as

mr1(p1, p2(e))− c(e1) +

[
5∑

k=1

Γk
1(e)± Γ3

1(e)
∣∣
ϕ2=0

± Γ3
1(e)

∣∣
ϕ2=ϕ2(e)

]

+Υ(p2(e))

[
4∑

k=1

Θk
1(e)± Θ1

1(e)
∣∣
ϕ2=0

± Θ1
1(e)

∣∣
ϕ2=ϕ2(e)

± Θ3
1(e)

∣∣
ϕ2=0

± Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

]
= 0

(10)

and “switching off” the predatory incentives according to a particular definition.15 For

example, applying a sacrifice test according to Definition 2 in effect forces the firm to ignore

15The notation ±· means that we add and subtract the relevant term.
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Figure 3: Pricing decision of firm 1 (left panels), non-operating probability of firm 2 (middle
panels), and time path of probability distribution over industry structures, starting from
e = (1, 1) at T = 0 (right panels). Accommodative equilibrium with conduct restriction
according to Definition 1.

[∑4
k=1Θ

k
1(e)

]
in setting its price, so the constraint is Ξ1(p1, p2(e), e) = mr1(p1, p2(e)) −

c(e1) +
[∑5

k=1 Γ
k
1(e)

]
= 0.

We compute the Markov perfect equilibria of the counterfactual game with a conduct

restriction (according to a particular definition) in place. For the conduct restrictions ac-

cording to Definitions 1 and 2, respectively, Figures 3 and 4 show the pricing decision of firm

1, the non-operating probability of firm 2, and the time path of the probability distribution

over industry structures. Comparing the left panels in Figures 3 and 4 to the left panels in

Figure 2, we see that there are neither deep wells nor trenches in the pricing decision and

that the counterfactuals are accommodative in nature. This is because the intense compe-

tition for the market in the trench of an aggressive equilibrium is driven almost entirely by

the baseline advantage-denying motive and the advantage-denying/exit motive (see Table

4). By shutting down the advantage-denying motive in its entirety, the conduct restrictions

according to Definitions 1 and 2 eliminate a trench and thus the mobility barrier that is likely

to lead to an entrenched monopoly over time. As further discussed in Besanko et al. (2013),

it is as if these conduct restrictions eliminate the aggressive (as well as the intermediate)

equilibrium of the original game.

Just as there are multiple equilibria in the original game, there are multiple equilibria

in the counterfactual game with a conduct restriction according to Definitions 3–5. For
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Figure 4: Pricing decision of firm 1 (left panels), non-operating probability of firm 2 (middle
panels), and time path of probability distribution over industry structures, starting from
e = (1, 1) at T = 0 (right panels). Accommodative equilibrium with conduct restriction
according to Definition 2.

two of these three equilibria, Figures 5–7 show the pricing decision of firm 1, the non-

operating probability of firm 2, and the time path of the probability distribution over industry

structures. The counterfactuals in the upper panels are aggressive in nature while those in

the lower panels are accommodative.

Further comparing industry structure, conduct, and performance between counterfactu-

als and equilibria tells us how much bite the conduct restrictions have. The panels labeled

“SRP”, “DCV”, “OW”, “CR”, and “REX” in Table 3 illustrate industry structure, con-

duct, and performance implied by the equilibria of the counterfactual game with a conduct

restriction according to Definitions 1–5.

Table 3 shows little changes between counterfactuals and equilibria, holding fixed the type

of equilibrium behavior. To the extent that there are changes, they are sometimes for the

better but sometimes for the worse. Compared to the intermediate equilibrium of the original

game, the conduct restrictions according to Definitions 3–5 increase concentration and prices

and decrease expected long-run consumer surplus CS∞. The most striking feature of Table

3 is though that the conduct restrictions according to Definitions 1–5 decrease expected

discounted consumer surplus CSNPV , sometimes substantially so.

The conduct restriction according to Definition 1 substantially decreases CSNPV because,

by shutting down the dynamic incentives in their entirety, it denies the efficiency gains from
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Figure 5: Pricing decision of firm 1 (left panels), non-operating probability of firm 2 (middle
panels), and time path of probability distribution over industry structures, starting from
e = (1, 1) at T = 0 (right panels). Aggressive (upper panels) and accommodative (lower
panels) equilibria with conduct restriction according to Definition 3.
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Figure 6: Pricing decision of firm 1 (left panels), non-operating probability of firm 2 (middle
panels), and time path of probability distribution over industry structures, starting from
e = (1, 1) at T = 0 (right panels). Aggressive (upper panels) and accommodative (lower
panels) equilibria with conduct restriction according to Definition 4.
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Figure 7: Pricing decision of firm 1 (left panels), non-operating probability of firm 2 (middle
panels), and time path of probability distribution over industry structures, starting from
e = (1, 1) at T = 0 (right panels). Aggressive (upper panels) and accommodative (lower
panels) equilibria with conduct restriction according to Definition 5.
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pricing aggressively in order to move down the learning curve. In addition, the conduct

restriction according to Definition 1 annihilates competition for the market. As can be seen

by comparing the left panel of Figure 3 with the lower left panel panel of Figure 2, the

shallow well in the accommodative equilibrium of the original game is absent. In contrast,

the conduct restriction according to Definition 2 allows a shallow well, as can be seen in

the left panel of Figure 4. Because it preserves a modicum of competition for the market,

the conduct restriction according to Definition 2 decreases expected discounted consumer

surplus much more modestly.

The conduct restrictions according to Definitions 3–5 are similar, as may be expected

given their more narrow focus on the immediate impact of a price cut on rival exit. These con-

duct restrictions, in particular, force the firm to ignore the advantage-building/exit motive—

thereby limiting the competition for the market in the well of an aggressive equilibrium—and

the advantage-denying/exit motive—thereby limiting the competition for the market in the

trench. Especially because the well is less deep, the conduct restrictions according to Defini-

tions 3–5 decrease expected discounted consumer surplus CSNPV compared to the aggressive

equilibrium of the original game.

6 Concluding remarks

To detect the presence of predatory pricing, antitrust authorities routinely ask whether a

firm sacrifices current profit in exchange for the expectation of higher future profit following

the exit of its rival. Because predatory pricing is an inherently dynamic phenomenon, we

show in this paper how to construct sacrifice tests for predatory pricing in a modern industry-

dynamics framework along the lines of Ericson & Pakes (1995). In particular, we adapt the

definitions of predation due to Ordover & Willig (1981) and Cabral & Riordan (1997) to

this setting and construct the corresponding sacrifice tests.

To do so, we build on Besanko et al. (2013) and decompose the equilibrium pricing con-

dition in a model of learning-by-doing. Our decomposition highlights the various incentives

that a firm faces when it decides on a price. Some of these incentives may be judged to be

predatory while others reflect the pursuit of efficiency. We establish formally that certain

terms in our decomposition map into the definitions of predation due to Ordover & Willig

(1981) and Cabral & Riordan (1997). We furthermore use our decomposition to develop

multiple alternative characterizations of a firm’s predatory pricing incentives and construct

the corresponding sacrifice tests.

In a dynamic pricing model like ours, consumers benefit in the short run from competition

for the market and in the long run from competition in the market. An antitrust policy

boosting both seems ideal. To gauge the consequences of applying sacrifice tests, we note
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that as antitrust authorities flag and prosecute an illegitimate profit sacrifice, they prevent a

firm from pricing to achieve that sacrifice. An illustrative example shows that, to the extent

that forcing firms to ignore the predatory incentives in setting their prices has an impact,

this impact arises largely because equilibria involving predation-like behavior are eliminated.

The example finally illustrates that applying sacrifice tests may limit competition for the

market and may thus harm consumers, at least in the short run.

Appendix

Proof of Proposition 1. The probability that firm 2 exits the industry in the current
period (given p2(e) and e) is

Φ2(p1, p2(e), e) = ϕ2(e)D0(p1, p2(e)) + ϕ2(e1 + 1, e2)D1(p1, p2(e)) + ϕ2(e1, e2 + 1)D2(p1, p2(e))

= [ϕ2(e1 + 1, e2)− ϕ2(e)]D1(p1, p2(e))− [ϕ2(e)− ϕ2(e1, e2 + 1)]D2(p1, p2(e)).

We say that p1(e) is predatory according to the Cabral & Riordan (1997) definition if
there exists a price p̃1 > p1(e) such that (1) Φ2(p1(e), p2(e), e) > Φ2(p̃1, p2(e), e) and (2)
Π1(p1(e), p2(e), e)|ϕ2=ϕ2(e)

< Π1(p̃1, p2(e), e)|ϕ2=ϕ2(e)
.

Part (a): Let p̃1 = argmaxp1 Π1(p1, p2(e), e)|ϕ2=ϕ2(e)
. Then p̃1 is uniquely determined

by

mr1(p̃1, p2(e))− c(e1) +
[
Γ1
1(e) + Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

+ Γ4
1(e) + Γ5

1(e)
]

+Υ(p2(e))
[
Θ1

1(e)
∣∣
ϕ2=ϕ2(e)

+ Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

+Θ4
1(e)

]
= 0. (11)

Subtracting equation (6) from equation (11), we have

mr1(p̃1, p2(e))−mr1(p1(e), p2(e)) =
[
Γ2
1(e) +

[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

]]
+Υ(p2(e))

[[
Θ1

1(e)− Θ1
1(e)

∣∣
ϕ2=ϕ2(e)

]
+Θ2

1(e) +
[
Θ3

1(e)− Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

]]
> 0

per inequality (7). Because mr1(p1, p2(e)) is strictly increasing in p1, it follows that p̃1 >
p1(e).

Because Γ2
1(e) ≥ 0 and Θ2

1(e) ≥ 0, with at least one of these inequalities being strict,
under the maintained assumptions of Proposition 1 it follows that ϕ2(e1+1, e2)−ϕ2(e) ≥ 0
and ϕ2(e) − ϕ2(e1, e2 + 1) ≥ 0, with at least one of these inequalities being strict. Using
equation (6),

∂Φ2(p1, p2(e), e)

∂p1
= [ϕ2(e1 + 1, e2)− ϕ2(e)]

∂D1(p1, p2(e))

∂p1
−[ϕ2(e)− ϕ2(e1, e2 + 1))]

∂D2(p1, p2(e))

∂p1
< 0

since ∂D1(p1,p2(e))
∂p1

< 0 and ∂D2(p1,p2(e))
∂p1

> 0. Thus, Φ2(p1(e), p2(e), e) > Φ2(p̃1, p2(e), e).
This establishes part (1) of the Cabral & Riordan definition above.
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To establish part (2), recall that by construction Π1(p1(e), p2(e), e)|ϕ2=ϕ2(e)
≤ Π1(p̃1, p2(e), e)|ϕ2=ϕ2(e)

.
Moreover, this inequality is strict because Π1(p1, p2(e), e)|ϕ2=ϕ2(e)

is strictly quasiconcave
in p1.

Part (b): Because p1(e) is predatory according to the Cabral & Riordan definition, there
exists a higher price p̃1 > p1(e) such that (1) Φ2(p1(e), p2(e), e) > Φ2(p̃1, p2(e), e) and (2)
Π1(p1(e), p2(e), e)|ϕ2=ϕ2(e)

< Π1(p̃1, p2(e), e)|ϕ2=ϕ2(e)
. Thus we have

Φ2(p1(e), p2(e), e)− Φ2(p̃1, p2(e), e)

= [D1(p1(e), p2(e))−D1(p̃1, p2(e))] [ϕ2(e1 + 1, e2)− ϕ2(e)]

− [D2(p1(e), p2(e))−D2(p̃1, p2(e))] [ϕ2(e)− ϕ2(e1, e2 + 1)] > 0. (12)

Because ∂D1(p1,p2(e))
∂p1

< 0 and ∂D2(p1,p2(e))
∂p1

> 0, D1(p1(e), p2(e)) − D1(p̃1, p2(e)) > 0 and
D2(p1(e), p2(e)) −D2(p̃1, p2(e)) < 0. The only way for inequality (12) to hold is thus that
ϕ2(e1 + 1, e2)− ϕ2(e) > 0 or ϕ2(e)− ϕ2(e1, e2 + 1) > 0 which, in turn, implies Γ2

1(e) > 0 or
Θ2

1(e) > 0.
Like Π1(p1, p2(e), e), Π1(p1, p2(e), e)|ϕ2=ϕ2(e)

is strictly quasiconcave. It follows from
p̃1 > p1(e) and Π1(p1(e), p2(e), e)|ϕ2=ϕ2(e)

< Π1(p̃1, p2(e), e)|ϕ2=ϕ2(e)
that Π1(p1, p2(e), e) is

strictly increasing in p1 at p1(e). (If not, then either p1(e) maximizes Π1(p1, p2(e), e), contra-
dicting the hypothesis that p̃1 is more profitable than p1(e), or Π1(p1, p2(e), e) is strictly de-
creasing in p1 at p1(e). In the latter case, p̃1 > p1(e) then implies Π1(p1(e), p2(e), e)|ϕ2=ϕ2(e)

>
Π1(p̃1, p2(e), e)|ϕ2=ϕ2(e)

because Π1(p1, p2(e), e) is a single-peaked function, again contra-
dicting the hypothesis that p̃1 is more profitable than p1(e).) Thus,

∂ Π1(p1(e), p2(e), e)|ϕ2=ϕ2(e)

∂p1
=

∂D1(p1(e), p2(e))

∂p1

{
mr1(p1(e), p2(e))− c(e1)

+
[
Γ1
1(e) + Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

+ Γ4
1(e) + Γ5

1(e)
]

+Υ(p2(e))
[
Θ1

1(e)
∣∣
ϕ2=ϕ2(e)

+ Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

+Θ4
1(e)

]}
> 0

or

mr1(p1(e), p2(e))− c(e1) +
[
Γ1
1(e) + Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

+ Γ4
1(e) + Γ5

1(e)
]

+Υ(p2(e))
[
Θ1

1(e)
∣∣
ϕ2=ϕ2(e)

+ Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

+Θ4
1(e)

]
< 0. (13)

Subtracting inequality (13) from equation (6) then yields

Γ2
1(e) +

[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

]
+Υ(p2(e))

{[
Θ1

1(e)− Θ1
1(e)

∣∣
ϕ2=ϕ2(e)

]
+Θ2

1(e) +
[
Θ3

1(e)− Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

]}
> 0.
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