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Abstract

We study a principal-agent model with both moral hazard and adverse selection. Risk-
neutral agents with limited liability have arbitrary private information about the distri-
bution of outputs and the cost of effort. We obtain conditions under which the optimal
mechanism offers a single contract to all types. These conditions are always satisfied, for
example, if output is binary or if the distribution of outputs is multiplicatively separable
and ordered by FOSD (if it is not ordered, the optimal mechanism offers at most two con-
tracts). If, in addition, the marginal distribution satisfies the monotone likelihood ratio
property, this single contract is a debt contract. Our model suggests that offering a single
contract may be optimal in environments with adverse selection and moral hazard, where
offering flexible menus of contracts provides gaming opportunities to the agent.
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1 Introduction

Most real-world contracts are much simpler than theory predicts. Differently from standard
adverse selection models, contracting parties offer a limited number of contracts, often a single
one. Unlike in standard moral hazard models, similar contracts are offered in fundamentally
different environments. As Hart and Holmstrom (1987) and Chiappori and Salanie (2003) argue
in their surveys of the literature:

The extreme sensitivity to informational variables that comes across from this
type of modeling is at odds with reality. Real world schemes are simpler than the
theory would dictate and surprisingly uniform across a wide range of circumstances.
(Hart and Holmstrom, 1987, pp. 105)

The recent literature (...) provides very strong evidence that contractual forms
have large effects on behavior. As the notion that “incentives matter” is one of the
central tenets of economists of every persuasion, this should be comforting to the
community. On the other hand, it raises an old puzzle: if contractual form matters
so much, why do we observe such a prevalence of fairly simple contracts? (Chiappori
and Salanie, 2003 , pp. 34)

In this paper, we propose an answer to this puzzle based on the interaction between adverse
selection, moral hazard, and limited liability. Most contracting situations have both adverse
selection and moral hazard. Managers, for example, take actions that affect the firm’s profitabil-
ity. At the same time, they usually have better knowledge about the efficacy of each action.
Moreover, virtually all contracting parties have limited liability. Entrepreneurs raising capital
from investors, for example, enjoy limited liability as the value of their equity cannot fall below
zero. Also, anti-slavery laws enforce limited liability in employment contracts.

We consider a principal-agent relationship with bilateral risk neutrality, free disposal, and
limited liability. The agent selects an unobserved “effort,” which may consist of a single or multi-
ple tasks. The agent also has private information, in an arbitrary way, about the distribution of
outputs and about effort costs, resulting in a model where types and efforts are multidimensional
(possibly infinite dimensional) and unordered. We show that the interaction between adverse
selection, moral hazard, and limited liability imposes severe screening costs.

With binary outcomes, the optimal mechanism involves offering a single contract to all agents
regardless of type space or the distribution of types. We generalize this result to settings with
multiple outputs under a multiplicative separability condition. This condition – satisfied, for
example, under the spanning condition of Grossman and Hart (1983) or if output is binary –
is equivalent to assuming that agents rank the “power” of all contracts equally. The optimal
mechanism involves either one or two contracts depending on whether the effort space is ordered
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by first-order stochastic dominance. Additionally, if the marginal distribution of output satisfies
the monotone likelihood ratio property, the optimal contract consists of the principal taking a
single debt contract or, equivalently, giving all agents the same call option.

More broadly, our paper identifies an important downside from offering flexibility to agents
through menus of contracts: gaming. This is particularly stark in the model considered here,
where both the principal and the agent are risk neutral. Then, the agent always selects the
contract with the highest expected payment conditional on his effort, which is precisely the
contract with the highest cost to the principal. That is, conditional on the effort that the
agent choses, reducing the number of contracts always increases the principal’s profits (for a
fixed effort). In particular, when the principal can identify a contract with the highest power
in a mechanism (i.e., when multiplicative separability holds), she can simultaneously reduce
informational rents and increase efficiency by removing all other contracts.

Although the framework we study has been widely applied to financial contracting, it has
many other applications. One such application is to procurement and regulation. Despite the
central role that menus of contracts play in the theory of procurement and regulation, they
are rarely observed in practice.1 Accordingly, many papers try to identify conditions for simple
procurement contracts to be close to optimal.2

We consider an extension of the classic model of Laffont and Tirole (1986, 1993), where effort
is allowed to affect the regulated firm’s costs stochastically and the firm is subject to limited
liability. Our results then determine conditions for the optimal mechanism to offer a single
contract and for this contract to be a price cap. Since limited liability constraints are a key
aspect of most procurement contracts (see, e.g., Burguet et al., 2012), our model provides an
explanation for the lack of menus of contracts in procurement.

Our result on the optimality of simple contracts is related to the robustness intuition of
Holmstrom and Milgrom (1987). However, the notion of robustness in our static model is
different from the one in their seminal paper. Here, offering a single contract is robust in that it
reduces the agents’ incentives to misrepresent their private information about the environment.
In Holmstrom and Milgrom’s model, linear contracts are robust in the sense that they prevent
the agent from readjusting effort over time.3 Moreover, as in their work, we also contribute to the

1For example, Bajari and Tadelis (2001) argue that “the descriptive engineering and construction management
literature (...) suggests that menus of contracts are not used. Instead, the vast majority of contracts are variants
of simple fixed-price (FP) and cost-plus (C+) contracts.”

2Using the Laffont-Tirole framework, Rogerson (2003) and Chu and Sappington (2007) show that a pair of
simple contracts can achieve a large fraction of the surplus under a certain range of parametric settings – 75 or
73 percent when costs follow either uniform or power distributions, respectively – for quadratic costs. Bajari and
Tadelis (2001) assume that there is a fixed cost of specifying each state of nature in the contract to rationalize
the simplicity of observed contracts.

3Edmans and Gabaix (2011) extend the linearity results to a model in which the realization of noise occurs
before the action. Chassang (2013) introduces a class of calibrated contracts that are detail-free and approximate
the performance of the best linear contract in dynamic environments when players are patient, while Carroll
(Forthcoming) shows that the best contract for a principal who faces an agent with uncertain technology and
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applied literature by identifying assumptions under which researchers can focus on a simpler set
of contracts when solving their models. For example, under the standard assumptions from Innes
(1990) (and, when there are more than two outputs, a multiplicative separability assumption),
there is no loss of generality in assuming that the optimal mechanism involves a single debt
contract even if there is adverse selection. It is then easy to obtain comparative statics results
in this environment.

Related Literature

Our model consists of a principal-agent relationship with bilateral risk neutrality, free disposal,
and limited liability. Starting with the canonical work of Innes (1990), many researchers have
studied models with either moral hazard or adverse selection in this environment. Moral hazard
models include, for example, Matthews (2001), Dewatripont et al. (2003), Poblete and Spulber
(2012), and Chaigneau et al. (2014). Adverse selection models include Nachman and Noe (1994),
Demarzo and Duffie (1999), DeMarzo (2005), and DeMarzo et al. (2005).4

Our work is related to a literature that identifies conditions for contracts to take the form
of debt and for equilibria to have complete pooling. In a single-task moral hazard setting,
Innes (1990) and Poblete and Spulber (2012) show that contracts take the form of debt if the
distribution of output satisfies the monotonicity of the likelihood ratio property. We build on
their environment by adding adverse selection in an arbitrary way and allowing effort to be
multi-dimensional. Our main focus is on the lack of menus of contracts, which, of course, can
only be addressed by introducing adverse selection. Nevertheless, our Theorem 3 is reminiscent
of their main result.

In a signaling model of financial contracting, Nachman and Noe (1994) show that there is
complete pooling if and only if firm types are strictly ordered by conditional stochastic dom-
inance. When firms are ordered by stochastic dominance, capitalists face a lemons problem:
while they would like to offer better terms to healthier firms, those who are more likely to accept
the contract are precisely the least healthy firms. Our papers emphasize different forces that
may lead to pooling. In Nachman and Noe (1994), pooling occurs when the distribution of types
induces a market breakdown for all but the worse contract. In our model, pooling happens
because of moral hazard and limited liability: giving flexibility to agents requires the principal
to leave excessive rents. For example, when output is binary, complete pooling occurs in our
model for any parameters of the model (i.e., regardless of whether types are ordered).5

Similarly, Demarzo and Duffie (1999) consider a signaling model of security design and show

evaluates contracts in terms of their worst-case performance is linear.
4For a general analysis of moral hazard models with limited liability, see Jewitt et al. (2008).
5See footnote 15 for a discussion of Nachman and Noe’s requirement that types be ordered by conditional

stochastic dominance in the context of our model.
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that, under a uniform-worst case condition, equilibrium contracts take the form of debt. In
this model, several authors studied whether intermediaries pool different assets in equilibrium.
The conclusion depends on whether the security designed before or after firms learn about
the asset’s profitability (c.f., DeMarzo (2005), Biais and Mariotti (2005), and Farhi and Tirole
(Forthcoming)).

In a one-dimensional adverse selection setting, Guesnerie and Laffont (1984) showed that
optimal mechanisms are “non-responsive” when the first-best allocation is decreasing. This
occurs because optimality clashes with incentive compatibility, which requires allocations to be
non-decreasing. The reason for pooling in our model is quite different from non-responsiveness.
For example, if the agent only has private information about the distribution of output, the
first best is increasing and, therefore, implementable in a pure adverse selection environment.
Nevertheless, with multiplicative separability, the principal offers a single contract to all types
(see footnote 11). More related to our work, Ollier and Thomas (2013) substitute the traditional
(interim) participation constraint by an ex-post constraint in a one-dimensional model with
binary outcomes. They show that, under conditions that ensure that the first-order approach
holds, there is no benefit from screening.

As argued previously, our application to procurement and regulation builds on Laffont and
Tirole (1986, 1993). In their model, there is both adverse selection and moral hazard. However,
because the link between effort, types, and output is deterministic, the model can be reduced to
a pure adverse selection model.6 We allow effort to affect the regulated firm’s costs stochastically
so the problem cannot be reduced to a pure adverse selection model. Picard (1987), Melumad
and Reichelstein (1989), and Caillaud et al. (1992) also introduce noise in the relationship
between output and effort and show that, under certain conditions, the principal can achieve
the same utility as in the absence of noise. Therefore, unlike in our model, they find that there
is no cost from moral hazard. Our model differs from theirs in two ways. First, we also allow
the agent to have private information about the distribution of output, while they assume that
all private information concerns the cost of effort. Introducing private information about the
distribution makes moral hazard costly. Second, they do not assume that agents have limited
liability. Limited liability also prevents the principal from eliminating moral hazard at no cost.

In Section 2, we present the model with two outputs and discuss the benchmark cases of pure
adverse selection and pure model hazard. In Section 3, we generalize the results for multiple
outputs and obtain conditions for the optimality of debt. Then, Section 4 concludes. The
extension of our model to procurement and regulation, as well as all proofs, are in the appendix.

6For this reason, Laffont and Martimort (2002) refer to them as ‘false moral hazard’ models.
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2 Two Outputs

2.1 Statement of the Problem

We start with the two-output model. There is a risk-neutral principal and a risk-neutral agent
with limited liability. The agent has private information about the environment, captured by a
type θ ∈ Θ. From the principal’s perspective, types are distributed according to a distribution
µ. We will discuss the assumptions on Θ and µ below.

The agent exerts an effort e ∈ E, which costs cθe. The space of possible efforts E is a compact
metric space. Effort can consist of a single task (E ⊂ R) or multiple tasks (E ⊂ RN). The
least-costly effort has a non-positive cost: min

e∈E
cθe ≤ 0. This condition is satisfied in standard

frameworks where the lowest effort costs zero, as well as in more general multi-task frameworks
that allow the agent to derive private benefits from certain actions.7

The principal does not observe the effort chosen by the agent. She does, however, observe
the output from the partnership x ∈ {xL, xH}, which is stochastically affected by the agent’s
effort. We refer to xH as a high output or as success, to xL as a low output or failure, and to
∆x := xH − xL > 0 as the incremental output. Given effort e, a high output happens with
probability pθe.

The agent has private information about the distribution of outputs and the cost of effort.
The type space Θ may be discrete or continuous, and types may be finite- or infinite-dimensional.
Each type is fully characterized by the the pair of functions

(
pθ· , c

θ
·
)
specifying the probability of

success and the cost of each effort.8 For example, if effort is binary, each type can be described
by the four-dimensional vector (pθ0, p

θ
1, c

θ
0, c

θ
1). If effort is continuous, each type is described by

an infinite-dimensional function
(
pθ· , c

θ
·
)

: E → R2. Our model does not require the agent to
have private information about all of these dimensions, of course. The case where the cost of
effort e is common knowledge, for example, is accommodated by letting cθe be constant in θ.
Note that we do not impose any order on the space of types and efforts. Success probabilities
and costs may be non-monotone functions and, moreover, types and effort may be complements,
substitutes, or neither in terms of probabilities and costs.

By the revelation principle, we can focus on direct mechanisms. A direct mechanism is a
triple of B(Θ)-measurable functions (w, b, e) : Θ → R2 → E, consisting of fixed payments w,
bonuses b, and effort recommendations e. An agent who reports type θ agrees to exert effort
e (θ) and receives w (θ) in case of failure and w (θ) + b (θ) in case of success. A pair of payments
w(θ) and b(θ) is called a contract.

7Allowing the cost of the lowest effort to be positive makes participation random as in Rochet and Stole (2002)
and is beyond the scope of this paper.

8We write pθ· to denote the function e 7−→ pθe that keeps θ constant and varies e. Similarly, p·e refers to
θ 7−→ pθe . The same notation is used to all functions in the paper.
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Given a mechanism (w, b, e) , a type-θ agent gets payoff

U (θ) := w (θ) + pθe(θ)b (θ)− cθe(θ). (1)

The mechanism must satisfy the following incentive compatibility (IC) and participation (IR)
constraints:

U (θ) ≥ w
(
θ̂
)

+ pθêb
(
θ̂
)
− cθê, ∀θ, θ̂, ê, (IC)

U (θ) ≥ 0, ∀θ. (IR)

It must also satisfy the following free disposal (FD) constraint:

b (θ) ≥ 0, ∀θ. (FD)

Free disposal must be satisfied if the agent can costlessly reduce output or if the principal can
secretly borrow from an outside lender to inflate output.

Finally, the agent is protected by limited liability, which prevents payments from being
negative. Since, by free disposal, bonuses are non-negative, we can write the agent’s limited
liability (LL) constraint as

w (θ) ≥ 0, ∀θ. (LL)

An optimal mechanism maximizes the principal’s expected profit

ˆ
Θ

{
pθe(θ) [xH − (w (θ) + b (θ))] +

(
1− pθe(θ)

)
[xL − w (θ)]

}
dµ(θ) (2)

among mechanisms that satisfy IC, IR, FD, and LL. To ensure the existence of an optimal
mechanism, we make the following technical assumptions, which are satisfied by all standard
agency models:

Assumption 1. Θ is a complete separable metric space. µ is a probability measure defined on
the Borel σ-field of Θ, which we denote by B(Θ). For each θ ∈ Θ, pθ· and cθ· are continuous
functions and, for each e ∈ E, p·e and c·e are B(Θ)-mensurable functions.

2.2 Benchmarks

We first consider the benchmark cases of pure moral hazard and pure adverse selection. We show
that, in both cases, the principal typically offers a different contract to each type. Therefore,
the principal only prefers to offer the same contract to all types when moral hazard and adverse
selection co-exist. For simplicity, we focus on the single-task case (E ⊂ R) and assume that
the probability of high output pθe and the cost of effort are both non-decreasing in e (i.e., effort
increases the probability of success at a cost). We normalize the lowest effort to zero.
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Pure Moral Hazard

Suppose the principal observes the agent’s type but does not observe effort. Without limited
liability, the principal can implement the first best by “selling the firm” to each agent – i.e., paying
a bonus equal to the incremental output b (θ) = ∆x and offering a fixed wage that extracts the
entire surplus w (θ) = cθe(θ) − pθe(θ)∆x, where e(θ) is the first-best effort. With limited liability,
the principal needs to leave positive rents to the agent if she wants to sell the firm. Then, it is
profitable to distort the bonus downward, causing some types to exert less effort.9 Moreover,
limited liability binds, so the agent gets a zero fixed wage.

Optimal contracts with and without limited liability vary in opposite dimensions: While,
without limited liability, they have the same bonus (b = ∆x) and different fixed wages, optimal
contracts with limited liability have the same fixed wage (w = 0) and different bonuses.10 In
both cases, however, the principal offers different contracts to different types. Moreover, these
mechanisms are no longer feasible if types are unobservable. If offered contracts with the same
bonus and different fixed wages, all types would select the one with the highest wage. Similarly,
if offered the same fixed wage and different bonuses, they would all pick the contract with the
highest bonus. The principal can still screen unobservable types by varying both the fixed wage
and the bonus. In fact, without limited liability, this is typically optimal. Our main result shows
that, with limited liability, the principal prefers not to offer a menu of contracts. Instead, the
optimal mechanism offers a single contract despite the presence of many different types.

Pure Adverse Selection

Now suppose the principal observes the agent’s effort but not his type. If effort costs are
common knowledge (that is, θ only affects the conditional probability of success), the principal
can implement the first best by fully reimbursing the cost of each effort. The agent would then
be indifferent between all efforts and would, therefore, accept to pick the principal’s preferred
one.11 The principal can no longer implement the first best, however, if effort costs are private
information. If she offered to fully reimburse the effort costs of all types, they would all pretend

9To see this, note that if the principal wants to recommend the lowest effort, she will pay w(θ) = b(θ) = 0
and get expected payoff pθ0xH +

(
1− pθ0

)
xL > xL. Suppose the principal pays b(θ) ≥ ∆x and the agent exerts

effort e. The principal’s payoff is then pθe [xH − b (θ)] +
(
1− pθe

)
xL ≤ pθe [xH −∆x] +

(
1− pθe

)
xL = xL .

Comparing these two inequalities, we can see that offering b(θ) ≥ ∆x is dominated by paying w = b = 0 and
recommending e = 0. Then, because agents are paid a bonus lower than the incremental output, the efforts of
all types e(θ) lie (weakly) below the first-best effort.

10For example, when there are only two efforts (say, 0 and 1) and the agent has limited liability, the principal
offers a bonus b (θ) =

cθ1
pθ1−pθ0

if she recommends the high effort (e (θ) = 1). This bonus is strictly increasing in cθ1
and pθ0 and strictly decreasing in pθ1.

11Note that, unlike in Guesnerie and Laffont (1984), the first-best allocation in this case is non-decreasing and
is therefore feasible when the agent is not subject to moral hazard. Complete pooling in our model is due to the
interaction between adverse selection, moral hazard and limited liability, not because of non-responsiveness.
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to be the types with the highest costs.
If, on the other hand, the probability of success is common knowledge (i.e., θ only affects

the cost of effort), the optimal mechanism posts a payment for each (observed) effort. Agents
choose which effort to exert based on their privately-known costs.

As we show in the appendix, if the agent has private information about both probabilities
and costs, the principal typically offers a menu of contracts to screen their private information.
Agents with higher probability of success pick contracts with lower fixed payments and higher
bonuses.

None of these mechanisms are feasible if effort is not observable. If the principal offered
them, agents would pick the lowest effort and claim to have exerted the highest effort, violating
incentive compatibility. In fact, as we show next, the principal’s inability to observe effort limits
her power to screen the agent’s private information to the extent that it is optimal for her to
offer a single contract.

2.3 Contract Simplicity

We can now state the simplicity result with binary outcomes, which establishes that the principal
offers a single contract:

Theorem 1. There exists an optimal mechanism that offers a single contract (w, b) to all types,
with w = 0 and b < ∆x.

The optimal contract can be interpreted as a debt contract for the principal with face value
xH − b ∈ (xL, xH). It can also be interpreted as giving the agent a call option on output with
strike price xH − b.

The proof is based on three lemmas. The first one shows that IC and LL imply that IR never
binds. This follows from the fact that the agent can always guarantee himself a non-negative
payoff by picking the lowest effort and collecting the non-negative payments. The second lemma
shows that any mechanism that pays a bonus greater than the incremental output to some type
cannot be optimal. Any such mechanism gives the principal a payoff that is lower than if she
offered all types a constant payment of zero (w = b = 0).

The last lemma establishes that, for any mechanism with bonuses lower than the incremental
output, if multiple contracts are being offered, the principal can improve by offering all types the
contract with the highest bonus. Since IR never binds, all agents pick this single contract once
all other contracts are removed. There are two effects from this migration to the highest-powered
contract: a reduction in informational rents and an increase in efficiency. Since the agents are
risk neutral, they pick the contract that maximizes expected payments conditional on their
effort. Thus, holding effort fixed, reducing the set of contracts being offered decreases expected
payments to the agents (rent extraction effect). Second, because agents now face a higher bonus,
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they choose an effort with a higher probability of success. This raises the principal’s profit by
(pẽ− pe)[∆x− b], where e is the agent’s old effort, ẽ is the agent’s new effort, and pẽ ≥ pe. Since
the incremental output exceeds the bonus, both terms are positive. Hence, the efficiency effect
from increasing effort is also positive. The proof then concludes by showing that an optimal
mechanism exists.

Limited liability and risk neutrality play an important role in Theorem 1. Limited liability
ensures that agents do not leave the mechanism if their contract is removed. Without it, the
participation constraint would bind for some type. Then, removing low-powered contracts would
induce some types to prefer not to participate. Risk neutrality implies that, holding effort fixed,
the principal and the agent split a pie of a fixed size. Since the agent always picks the contract
with the highest expected payment, providing more freedom of choice to the agent can only hurt
the principal (holding effort fixed). With risk aversion, different bonuses also affect the size of
the pie since lower bonuses insure the agent better. Then, removing all but the highest-powered
contract improves efficiency but worsens risk sharing.

Theorem 1 greatly simplifies the analysis of the optimal mechanism by allowing us to rewrite
the principal’s program as a standard optimization problem with a single instrument b ∈ [0,∆x].
It is then straightforward to obtain comparative statics results. For example, using a supermod-
ularity argument, we can show that the optimal bonus and the success probabilities of all types
are increasing in the incremental output ∆x. Moreover, the probability of success is distorted
downwards relative to the first best. Formally, letting eFB denote a first-best effort, we have:

eFB (θ) ∈ arg max
e
xL + pθe∆x− cθe and e (θ) ∈ arg max

e
pθeb− cθe .

Since b < ∆x, it follows by revealed preferences that pθe(θ) ≤ pθeFB(θ) with strict inequality for
some type if the type space is sufficiently rich. Finally, notice that the theorem does not depend
on the distribution of types or other parameters of the model.

It is straightforward to generalize the analysis above to the case of multiple outputs when
contracts are restricted to take the form of two-part tariffs, where the fixed part corresponds
to a wage that is paid independent of the output and the variable part corresponds to equity
payments that are linear in the firm’s output. The restriction to two-part tariffs can be motivated
by arbitrage opportunities when the principal deals with multiple agents who can costlessly
redistribute outputs between themselves. In the next section, we study optimal contracts without
this restriction.
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3 Multiple Outputs

We now generalize the model to allow for multiple outputs. Let X ⊆ R be a closed set of possible
outputs, which may be discrete or continuous. The agent’s private information is described by
a type θ ∈ Θ, where Θ is a complete, separable, metric space. Types are distributed according
to a probability measure µ defined on Borel σ-field of the type space B(Θ). Notice that our
formulation allows types to be finite- or infinite-dimensional, and their distribution may be
discrete or continuous.

The agent chooses an unobservable effort e from the compact metric space E. A type-θ agent
who exerts effort e produces output according to the cumulative distribution function F θ

e (x).
Let cθe denote type θ’s cost of of effort e. As before, we assume that the least-costly effort has a
non-positive cost: mine c

θ
e ≤ 0 for all θ.

A compensation contract is a function that specifies a transfer to the agent conditional on each
possible output. A mechanism specifies a compensation contract and an effort recommendation
for each type. That is, a mechanism is a pair of B(Θ)-measurable functions w : Θ×X → R and
e : Θ → E. Therefore, a type-θ agent is recommended effort e (θ) and gets paid wθ (x) in case
of output x.

Given a mechanism (w, e), a type-θ agent gets expected payoff

U (θ) :=

ˆ
wθ (x) dF θ

e(θ) (x)− cθe(θ).

As in the two-output case, the mechanism has to satisfy the following incentive compatibility,
participation, and limited liability constraints:

U (θ) ≥
ˆ
wθ̂ (x) dF θ

ê (x)− cθê, ∀θ, θ̂, ê, (IC)

U (θ) ≥ 0, ∀θ, (IR)

wθ (x) ≥ 0, ∀θ, x. (LL)

It also has to satisfy the following bilateral free disposal (BFD) constraint:

0 ≤ wθ (y)− wθ (x) ≤ y − x, (BFD)

for all θ, x, y with y ≥ x. This constraint states that the payments of both the principal and the
agent are non-decreasing. As Innes (1990) argues, BFD can be seen as an additional incentive
constraint if the principal and the agent can costlessly reduce output or if they can borrow from
outside lenders in order to inflate output. In the two-output framework from Section 2, BFD
requires the bonus to lie between 0 and ∆x. Since the optimal mechanism with two outputs

10



always has a bonus lower than ∆x, BFD is satisfied at the optimum – that is, the principal’s
free disposal constraint does not bind.

An optimal mechanism maximizes the principal’s expected profit

ˆ
Θ

ˆ
X

[x− wθ(x)] dF θ
e(θ)(x)dµ(θ) (3)

among mechanisms that satisfy IC, IR, LL, and BFD.
The following technical conditions, which generalize Assumption 1, are made to guarantee

the existence of an optimal mechanism:

Assumption 2. i) For each θ ∈ Θ, cθ· and dF θ
· (x) are continuous;

ii) For each e ∈ E, c·e and dF ·e(x) are B(Θ)-mensurable;12

iii) For each (θ, e) ∈ Θ× E, dF θ
e (·) is a probability measure on X; and

iv) The expected output is µ-integrable on Θ × E. That is,
∣∣´ xdF θ

e (x)
∣∣ ≤ ξ(θ) for all

θ, e, where ξ : Θ→ R is an integrable function.

The main question we address in this section is whether there exists an optimal mechanism that
offers the same compensation contract to all types, i.e., w(θ, x) = w(θ̃, x) for all θ, θ̃, x. The
example below shows that, without additional restrictions, the answer is no.

Example 1. There are two types Θ = {A,B} in equal proportion, two efforts E = {0, 1}, and
three outcomes X = {L,M,H} with L < M < H. Both types have the same effort costs: cθ0 = 0

and cθ1 = 1 for all θ. Their conditional probabilities are represented in the following table:

Type A
x = L x = M x = H

e = 0 1
3

1
3

1
3

e = 1 1
5

2
5

2
5

Type B
x = L x = M x = H

e = 0 1
3

1
3

1
3

e = 1 1
6

1
2

1
3

Table 1: Conditional probabilities of each type.

Both types have the same probability distribution when they exert low effort. However, A
observes both high and low outputs more frequently than B when he exerts high effort, whereas
B observes the intermediate output more frequently than A. Notice that, for both types, the
distribution of output with high effort first-order stochastically dominates the distribution with
low effort. We assume that M and H are large enough for it to be optimal to recommend a high
effort to both types.

As we show in the appendix, the optimal mechanism offers contract wA = (0, 0, 15) to type
A and wB = (0, 6, 6) to type B. Referring to the incremental payment in each state as “the

12We use the weak topology on the space of distributions on X.
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bonus,” this mechanism pays type A a bonus of 15 in state x = H and zero in other states. Type
B gets a bonus of 6 in state M and zero in states L and H. The principal finds it profitable to
separate them because their likelihood ratios are not ordered. Each type is paid a bonus in the
state where his likelihood ratio is the highest (x = H for type A and x = M for type B).

The previous example illustrates the main problem in generalizing Theorem 1 to multiple
outputs. With two outputs, the only way to incentivize effort is to pay a higher bonus. Thus,
we can unequivocally rank the power of any pair of contracts by their bonuses.13 With multiple
outputs, there is one bonus associated with each incremental output, so contract power has,
in general, only a partial order. Types with different probability distributions may be affected
differently by bonuses paid in different states.

To rule out cases such as the one in Example 1, where types disagree over the effectiveness of
incentives, we need to ensure that types order the power of different contracts in the same way.
Formally, we need the following property to hold. Let w and w̃ be two contracts that satisfy FD
and LL and let e, ẽ ∈ E. If there exists θ for which

ˆ
w(x)

(
dF θ

e (x)− dF θ
ẽ (x)

)
dx ≥

ˆ
w̃(x)

(
dF θ

e (x)− dF θ
ẽ (x)

)
,

then, for all θ̃,
ˆ
w(x)

(
dF θ̃

e (x)− dF θ̃
ẽ (x)

)
dx ≥

ˆ
w̃(x)

(
dF θ̃

e (x)− dF θ̃
ẽ (x)

)
.

This condition states that if one type has more incentives to exert a higher effort under w than
under w̃, so do all other types. Of course, whether or not they will choose to exert the higher
effort depends on the effectiveness and the cost of their efforts. But, because they all agree about
which contracts have the highest power, the principal cannot increase effort from all types by
offering contracts that pay higher bonuses in different states as in Example 1.

Although intuitive, this is a somewhat convoluted assumption. As we show in the appendix,
however, this assumption is equivalent to the followingmultiplicative separability (MS) condition:

Definition 1. The distribution of outputs satisfies multiplicative separability (MS) if there exist
functions H : X → R and I : E ×Θ→ R such that

F θ
ẽ (x) +H (x) I(ẽ, θ) = F θ

e (x) +H (x) I (e, θ) ∀e, ẽ, θ, x. (4)

Multiplicative separability always holds when there are only two outputs. It also holds under
the Linearity of the Distribution Function Condition (Grossman and Hart (1983); Hart and

13Similarly, when the contract space is restricted to two-part tariffs, we can unequivocally rank the power of
two contracts by their slopes.
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Holmstrom (1987)), which is obtained by taking E = [0, 1] and I (e, θ) = e× i (θ):

F θ
e (x) = eF θ

1 (x) + (1− e)F θ
0 (x) . (5)

This condition is commonly used in pure moral hazard models, along with the convexity of costs,
to justify the first-order approach. Importantly, however, none of our results assume the validity
of the first-order approach.14

We will say that a family of distributions F θ :=
{
F θ
e : e ∈ E

}
is ordered by first-order

stochastic dominance (FOSD) if it can be written as in equation (4) with H(x) ≥ 0 for all x.15

Under this condition, F θ
e (x) first-order stochastically dominates F θ

ẽ (x) if and only if I(e, θ) >

I(ẽ, θ). That is, the family of distributions F θ is ordered by FOSD. Economically, in a family
ordered by FOSD, the ranking of expected payments under different efforts is the same in all
increasing compensation contracts. This is a usual assumption in single-task models, where
we typically assume that effort orders the output distribution in terms of FOSD. In multi-task
models, this assumption is less compelling. It fails, for example, if the agent allocates effort
to a safe and a risky task, and effort allocated to the risky task increases both the mean and
the variance of output. Notice that any distribution is ordered by FOSD if there are only two
outputs.

The next theorem presents our main result. It shows that, whenever multiplicative separa-
bility holds, the optimal mechanism offers at most two contracts. If, in addition, the family of
distributions is ordered by FOSD, the optimal mechanism offers a single contract to all types.
Despite being offered the same contract, types may choose different efforts depending on their
effort costs and output distributions.16

Theorem 2. Suppose MS holds. There exists an optimal mechanism that offers at most two
compensation contracts to all types. Moreover, if F θ is ordered by FOSD for all θ, there exists

14There is no relationship between MS and Holmstrom’s (1979) sufficient statistic result. First, equation (4)
does not imply that x is a sufficient statistic for e given (x, θ). To see this, suppose the effort space is [0, 1]

and let x be continuously distributed with a differentiable p.d.f. fθe . Then, the likelihood ratio is
∂fθe
∂e (x)

fθe (x)
=[

1− 1
∂H
∂x (x)

fθ0 (x)
∂I
∂e (e,θ)

]−1
, which depends on θ unless fθ0 (x)

∂I
∂e (e,θ)

is constant in θ. Second, because types also affect the
cost of effort, the optimal pure-moral-hazard contract is also a function of θ. For example, in the model of Innes
(1990), the strike price of the agent’s option is decreasing in the cost of effort (Chaigneau et al. (2014)). Thus,
even when θ is uninformative about effort, it still affects the optimal contract directly through the cost of effort.

15The relevant assumption is that H(x) has the same sign for all x. We can always renormalize a distribution
with H(x) ≤ 0 for all x as one with H(x) ≥ 0 by switching the sign of I. In the pure adverse selection model of
Nachman and Noe (1994), project types are assumed to be ranked in terms of first-order stochastic dominance,
which is fundamentally different than assuming that, for each type θ, effort orders outputs in terms of FOSD.
We do not require types to be ordered in any way.

16Notice that Example 1 shows that MS is important for Theorem 2, as the distributions in that example are
ordered by FOSD. MS can be slightly weakened since it does not need to hold for all efforts, only the ones that
principal may want to implement. For example, Theorem 2 remains unchanged if (4) fails at points where F θ· (x)
and cθ· are locally concave (since such efforts are not implementable).
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an optimal mechanism that offers the same compensation contract to all types.

When F θ is ordered by FOSD, the proof of Theorem 2 is similar to the one from Theorem 1.
Recall that, with two efforts, substituting all contracts by the one with the highest bonus had
two effects. First, holding effort fixed, it reduced the expected payment to all types. Second, it
increased the probability of success, which raised the principal’s profit because the bonus was
lower than the incremental output.

The first effect above remains unchanged with multiple outputs: holding effort fixed, the
principal and the agent split a pie of fixed size (since they are both risk neutral). Therefore, for
any fixed effort, removing a contract from the mechanism cannot hurt the principal. Moreover,
because of MS, contracts can be ranked in terms of their incentives. Thus, replacing all contracts
by the one with the highest incentives weakly improves the output distribution of all types (in
the sense of FOSD). Since payments cannot grow faster than outputs (BFD), improving the
output distribution is always beneficial. Thus, the second effect is also positive when MS holds.

When F θ is not ordered, the principal may not want to encourage “higher efforts” from all
types, so the second step of the previous argument fails. Instead of offering only the contract with
the highest incentives, the principal must also include the contract with the lowest incentives.
The proof then verifies that, because of MS, all agents with a positive benefit from effort pick
the high-powered contract and the ones with a negative benefit from effort pick the low-powered
contract.

Debt Contracts

Next, we consider the optimality of debt contracts. The principal gets a debt contract if his
payments x− w (x) equal min {x, x̄} for some face value x̄, or, equivalently, if the agent is paid
a call option w (x) = max {x− x̄, 0}. To avoid rounding issues, we assume that output is
continuously distributed on an interval X ⊂ R+. Let the probability density function f θe (x)

with full support on X denote type θ’s probability of output x conditional on effort e.
Incentive compatible mechanisms cannot have two different debt contracts, since agents would

never pick the one with the highest face value. Therefore, for a mechanism to offer debt contracts
only, it needs to offer the same contract to all types. Accordingly, we assume that MS holds and
F θ is ordered by FOSD for all θ, so the principal offers a single contract (Theorem 2).

The existing literature has established that, in the single-task version of the model (E ⊂ R)
with pure moral hazard, the monotone likelihood ratio property (MLRP) is sufficient for the
optimality of debt. A distribution f θe satisfies MLRP if, for any eL, eH ∈ R with eL < eH ,
the ratio

fθeL
(x)

fθeH
(x)

is decreasing in x. Intuitively, MLRP means that the “evidence” in favor of
higher efforts increases with output.17 Here, because all types are offered the same contract, we

17MLRP plays an important role on the monotonicity of contracts (Holmstrom (1979), Grossman and Hart
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do not need to impose MLRP on all types. Let f̄e (x) :=
´
f θe (x) dµ (θ) denote the marginal

distribution of output conditional on e. That is, if all types choose effort e ∈ E, output is
distributed according to f̄e. Similarly, let Ī(e) :=

´
I(e, θ)dµ(θ). The marginal distribution

satisfies the monotone likelihood ratio property with respect to Ī if, whenever Ī (eL) < Ī (eH) ,

the ratio f̄eL (x)

f̄eH (x)
is decreasing in x.18

Our next result establishes that when, in addition to MS, the family of distributions is ordered
by FOSD and the marginal distribution satisfies MLRP, not only is it optimal to offer only one
contract, but this contract takes the standard form of debt for the principal or, equivalently, a
call option to the agent.

Theorem 3. Suppose MS holds, the family of distributions is ordered by FOSD, and the marginal
distribution satisfies MLRP. Then, the optimal mechanism gives the principal a single debt con-
tract.

The intuition for the optimality of debt is reminiscent of Innes (1990). With MLRP, higher
outputs are more “indicative” of higher effort. Therefore, transferring payments from lower to
higher outputs relaxes the IC constraints. In the canonical pure moral hazard model, there is a
single IC, preventing the agent from choosing a lower effort.

Here, because of adverse selection, there is one IC for each type, which prevents each type
from picking a different effort. However, because of multiplicative separability and ordering by
FOSD, the ICs of all types are aligned, in the sense that if a perturbation raises one type’s
incentives to exert effort, it must also raise the incentives of all types. This observation allows
us to summarize all the constraints of the program into a single one, as in the pure moral hazard
model. Moreover, since the principal offers a single contract (Theorem 2), the optimality of debt
depends on the likelihood ratio of the marginal distribution, and not the conditional distribution
of each type. In fact, it is straightforward to follow the approach from the proof of Theorem 3
to characterize optimal non-debt contracts when marginal distributions do not satisfy MLRP.19

(1983)).
18Under MS, any family of distributions that satisfies MLRP for each type θ is both ordered by FOSD and

has a marginal distribution F̄e that satisfies MLRP. Therefore, MLRP for each type is a stronger requirement
than being ordered by FOSD and having a marginal that satisfies MLRP. Notice that the linear distribution (5)
satisfies MS, is ordered by FOSD, and has a marginal that satisfies MLRP as long as F θ1 (x) ≤ F θ0 (x) for all x, θ
(i.e., the highest effort first-order stochastically dominates the lowest effort).

19In the appendix, we present a partial converse of Theorem 3 showing that, if the marginal distribution does
not satisfy MLRP and satisfies a weak condition, there exists a cost function for which debt is not optimal. This
weak condition rules out distributions that are so extreme that the principal would implement the same effort
for any cost function (in which case the optimal contract would pay zero in all states).
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4 Conclusion

The observation that many contracts are simple and relatively uniform across different sectors
is an old puzzle in contract theory. While standard adverse selection models predict that agents
will be offered large menus of contracts, contracting parties typically offer a limited number
of contracts, often a single one. While standard moral hazard models predict that contracts
should be fine tuned to the likelihood ratio of output, similar contracts are offered in different
environments.

We argue that these two features endogenously emerge in a general model of moral hazard and
adverse selection if contracts must satisfy two common contractual constraints: limited liability
and free disposal. With binary outcomes, the principal always offers a single debt-like contract
regardless of any parameters of the model. The joint presence of moral hazard and adverse
selection is key for this result. When either types or effort are observed, the principal typically
prefers to offer different contracts to different types. With multiple outputs, it is optimal to
offer a single contract if either arbitrage opportunities restrict the space of contracts to two-part
tariffs, or if the distribution of output is ordered by FOSD and satisfies a separability condition.
Moreover, if the marginal distribution satisfies MLRP, this single optimal contract is a debt
contract for the principal.

Our paper shows that gaming may be an important downside from giving flexibility to agents
by offering menus of contracts. This is particularly stark with bilateral risk neutrality where,
holding effort fixed, the agent always selects the most expensive contract to the principal. Then,
reducing the number of contracts offered to the agent always increases the principal’s profits (for
a fixed effort). If, in addition, we can identify a most efficient contract from the menu (such as
when output is binary or when the distribution is multiplicatively separable), the principal can
always improve by eliminating other contracts.

The simplicity result relies on the presence of limited liability and bilateral risk neutrality.
Limited liability ensures that increasing the power of a contract will not force the agent to
abandon the mechanism. Bilateral risk neutrality means that, holding effort fixed, principal
and agent are perfectly misaligned so that the principal always benefits by reducing the agent’s
flexibility. With risk aversion, their misalignment is no longer perfect because there are potential
gains from risk-sharing. While risk neutrality is a reasonable assumptions in many settings (such
as the optimal compensation of wealthy managers, procurement contracts, or the regulation of
large companies), there are many other settings where they are not (for example, insurance
contracts or sharecropping). In these cases, our results no longer hold. In our companion paper
(Gottlieb and Moreira 2014), we study optimal mechanisms in the binary-outcome model when
agents are risk averse and when there are no limited liability constraints. While we obtain some
simplicity results, optimal mechanisms are considerably more complex than they are here.

16



Appendix

A. Procurement and Regulation

In this appendix, we adapt our framework to a model of procurement and regulation that builds
on the setup of Laffont and Tirole (1986, 1993). The key distinguishing feature is that, in their
model, effort affects the regulated firm’s cost deterministically so the model can be reduced to a
pure adverse selection model. For this reason, it is often called a model of ‘false moral hazard.’
Our model incorporates a dimension of moral hazard in their model by allowing effort to affect
the firm’s cost stochastically. We also allow private information to be multidimensional, as
opposed to the standard single-dimensional model.

A regulated firm produces an indivisible project at a random monetary cost C ∈ C. The
firm’s manager chooses a cost-reducing effort e ∈ E ⊂ R, which is not observed by the regulator.
Let F θ

e denote the distribution of the firm’s cost C conditional on type θ and effort e. By exerting
effort, the manager improves the distribution of the firm’s cost in the sense of FOSD:

eH > eL =⇒ F θ
eH

(x) ≤ F θ
eL

(x) ∀x. (FOSD)

The firm’s manager has cost of effort cθe, with mine c
θ
e ≤ 0. As argued in the text, this is satisfied

if the lowest effort costs zero or if the manager gets private benefits out of some activities (so
that cθe < 0 for some e). The firm’s manager has private information about both the ability to
cut costs (i.e., the distribution of costs F θ

e ) and the cost of effort cθe.
The project generates a consumer surplus of S > 0. The regulator observes the monetary

cost C incurred by the firm but not the manager’s private effort e. As an accounting convention,
we assume that the regulator reimburses the firm’s monetary costs in addition to paying the
firm an amount conditional on the realized cost.

A procurement contract is a function that specifies a transfer to the firm conditional on each
possible cost C. A mechanism is a pair of functions w : C×Θ→ R and e : Θ→ R specifying, for
each reported type, a payment conditional on the cost realization and an effort recommendation.
If this mechanism is truthful, a type-θ firm gets payoff

U(θ) ≡
ˆ
wθ (C) dF θ

e(θ) (C)− cθe(θ). (6)

The manager is protected by limited liability (LL) so that payments are non-negative:

wθ(C) ≥ 0. (LL)

There is also bilateral free disposal (BFD), which requires the compensation for reducing costs
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to be positive and not to exceed the amount of cost savings:

0 ≤ wθ (C)− wθ (C + ε) ≤ ε (BFD)

for all ε > 0. BFD must be satisfied, for example, if the manager can freely inflate costs (so that
payments are non-decreasing) and if the manager can freely borrow from an outside party to
inflate firm earnings (so that payments cannot grow faster than the amount of cost savings).

Since, by the accounting convention described above, the regulator fully reimburses the firm’s
cost realization, the regulator’s expected payment conditional on type θ effort e equals

ˆ
[C + wθ (C)] dF θ

e(θ) (C) .

As in Laffont and Tirole (1986, 1993), we assume that the government has to revert to distor-
tionary taxation to raise funds and, therefore, the regulator faces a shadow cost of public funds
λ > 0. Thus, the net surplus of consumers/taxpayers is

S − (1 + λ)

ˆ
[C + wθ (C)] dF θ

e(θ) (C) . (7)

A utilitarian regulator maximizes the sum of the expected utility of the firm’s manager (6) and
the consumers’ net surplus (7):

S − (1 + λ)

ˆ
CdF θ

e(θ) (C)− cθe(θ) − λ
ˆ
wθ (C) dF θ

e(θ) (C) .

Notice that, because taxation is distortionary (λ > 0), leaving rents the the regulated firm is
costly. Moreover, because each dollar reimbursed to the firm has an additional cost of λ due to
distortionary taxation, cutting the firm’s cost increases social surplus by 1 + λ. The first-best
effort, therefore, minimizes (1 + λ)

´
CdF θ

e (C) + cθe.20

As in Section 3, we impose the technical conditions from Assumption 2 (with C instead of
x). Recall that MS is automatically satisfied if there are only two possible costs.

The main difference between this model and the one from Section 3 that, while the principal
only cares about her own payoff, a utilitarian regulator also cares about the regulated firm’s
payoffs. Therefore, their preferences are no longer perfectly misaligned. Because of distortionary

20With pure moral hazard and without LL and BFD, the first best can be implemented by making the firm
the residual claimant of the social gains from cutting costs and extracting the firm’s entire surplus:

wθ(C) = (1 + λ)

[ˆ
CdF θeFBθ (θ)(C)− C

]
,

where eFBθ (θ) is the first-best effort. This violates both LL and BFD. It violates LL because w is non-degenerate
and has mean zero (so there must make negative payments), and it violates BFD because ∂wθ

∂C = − (1 + λ) < −1.
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taxation, the regulator would still like to leave as little rents as possible to the firm. However,
because the regulator also internalizes the manager’s effort cost, reducing effort distortions may
not increase the regulator’s payoffs. We therefore need conditions to ensure that effect distortions
have a monotonic effect on social surplus. For this reason, we assume that social surplus net of
firm payments has a unique maximum and that it is increasing in the range of efforts below the
maximum. Formally, let ēθ be the effort that maximizes

S − (1 + λ)

ˆ
CdF θ

e (C)− cθe, (8)

which we assume to be unique. We assume that

d

de

{
(1 + λ)

ˆ
CdF θ

e (C) + cθe

}
≤ 0

for all e ≤ ēθ. These assumptions state that reducing effort below the efficient level lowers the
net surplus. It is automatically satisfied if the net social surplus (8) is a quasi-concave function
of effort e. In particular, it holds if F θ

· and ce· are convex functions.
We can now state the simplicity result:

Proposition 1. Suppose MS holds. There exists an optimal mechanism that offers a single
procurement contract to all types.

Next, we turn to the optimal contractual form. Adapting Theorem 3, we obtain the following
proposition:

Proposition 2. Suppose MS holds and the marginal distribution satisfies MLRP. There exists an
optimal mechanism that offers to all types the procurement contract w (C) = max

{
C̄ − C; 0

}
,

for some C̄ ∈ R.

The optimal procurement contract specifies a “reasonable cost” C̄ and reimburses the regu-
lated firm for any cost cuts beyond C̄. Since, by our accounting convention, the regulator pays
the firm’s cost directly, the firm’s revenues under this contract equal:

w(C) + C = max
{
C̄, C

}
.

This reimbursement rule consists of a standard price cap except that, because of limited liability,
the regulator must bailout firms with cost realizations above the cap. As previously mentioned,
price caps are the most common form of incentive regulation. It is used, for example, by the U.S.
Federal Communications Commission (FCC) to regulate the telephone industry. Price caps are
often used in procurement as well. For example, prospective reimbursement systems commonly
used in health care specify an amount C̄ based on what a service should cost, and let providers
keep cost savings C̄ − C to themselves. They are used, for example, by Medicare.
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B. Proofs

Proof of Theorem 1

We first verify that participation is implied by incentive compatibility, limited liability, and free
disposal:

Lemma 1. Let (w, b, e) be a mechanism that satisfies IC, LL, and FD. Then, it satisfies IR.

Proof. The IC preventing θ from deviating to e states that U (θ) ≥ w (θ)+pθeb (θ) . Then, because
w(θ) and b(θ) are non-negative (LL and FD) and min

e∈E
cθe ≤ 0, it follows that U (θ) ≥ 0.

The proof of the theorem will use the following result, which states that the bonus does not
exceed the incremental output:

Lemma 2. Consider a mechanism (w, b, e) in which b (θ) > ∆x for some θ. Then, the mecha-
nism is not optimal.

Proof. Notice that, in any optimal mechanism, the limited liability constraint must bind for
some type. Otherwise, reducing the fixed payment to all types by a uniform amount maintains
feasibility and increases the principal’s payoff.

Let (w, b) be an optimal mechanism such that b(θ) > ∆x for some type θ. If all types obtain
b(θ) > ∆x, the principal’s payoff is strictly lower than the one she obtains by offering w = b = 0

to all types, which contradicts optimality.
Suppose there exists a type θ̃ who picks a contract with b(θ̃) ≤ ∆x. Because LL must bind

for some type, it must bind for a type that picks bH > ∆x (otherwise, the contract (0, bH) with
bH ≤ ∆x would pay less than the contract that pays w ≥ 0 and b > ∆x). Therefore, the
mechanism also includes at least one contract (wL, bL) with bL ≤ ∆x and contract (0, bH) with
bH > ∆x. We claim that this mechanism gives the principal a lower profit on all types than
offering w = b = 0 to all types.

For each θ, let ē(θ) ∈ arg min
e∈E

cθe. The principal’s profit from a type θ̂ choosing contract

(0, bH) and exerting effort eH ∈ E is

xL + pθ̂eH [∆x− bH ] .

Replacing this contract by w = b = 0 changes the principal’s payoff to xL + pθ̂
ē(θ̂)

∆x, which gives
a profit of

pθ̂0∆x− pθ̂eH [bH −∆x] > 0.

The principal’s profit from a type θ choosing (wL, bL) and exerting effort eL ∈ E is

xL − wL + pθeL [∆x− bL] .
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By the incentive compatibility constraint of a type who picks (wL, bL) and the fact that bH > ∆x,

pθeL∆x < pθeLbH ≤ wL + pθeLbL.

Adding xL to both extremes of this inequality and rearranging, gives

xL + pθeL∆x−
(
wL + pθeLbL

)
< xL.

Add pθē(θ)∆x ≥ 0 to the expression on the right to obtain:

xL + pθeL∆x−
(
wL + pθeLbL

)
< xL + pθē(θ)∆x.

The term on the right is the principal’s profit from the constant-wage contract (w = b = 0)
whereas the term on the left is the profit from the original contract. Hence, this replacement
also raises profits from any type who chooses a contract with b(θ) ≤ ∆x.

The next lemma, which is the main step for proving Theorem 1, shows that any feasible
mechanism is weakly dominated by a mechanism that offers a single contract to all types:

Lemma 3. Let (w, b, e) be a mechanism satisfying IC, IR, FD, and LL. There exists a mechanism
that offers a single contract (0, b∗) to all types and gives the principal a (weakly) greater payoff
than (w, b, e).

Proof. Let (w, b, e) be a mechanism that satisfies IC, IR, FD, and LL. By Lemma 2, for any
mechanism that offers a bonus greater than ∆x for some type, there exists another mechanism
offering bonuses lower than ∆x to all types that gives the principal a higher payoff. Thus, there
is no loss of generality in assuming that b(θ̂) ≤ ∆x for all θ̂ ∈ Θ. Fix a type θ ∈ Θ.

Let b∗ ≡ sup
{
b(θ̂) : θ̂ ∈ Θ

}
and w∗ ≡ inf

{
w(θ̂) : θ̂ ∈ Θ

}
denote the “highest” bonus and

the “lowest” fixed payment in the mechanism. If w∗ > 0, reducing all fixed payments uniformly
by w∗ would keep all the constraints satisfied and increase the principal’s payoff. Therefore, we
can assume that w∗ = 0. Moreover, either there exists θ̂ such that w

(
θ̂
)

= 0, b
(
θ̂
)

= b∗ (i.e.,

(0, b∗) is offered in the mechanism), or (0, b∗) is a limit point of
{(
w
(
θ̂
)
, b
(
θ̂
))

; θ̂ ∈ Θ
}
.

Consider the alternative mechanism that offers the contract (0, b∗) to all types and let

e∗ (θ) ∈ arg max
e∈E

pθeb
∗ − cθe,

which exists because the objective function is continuous and E is compact. The principal’s
payoff from type θ in the original mechanism is

xL − w(θ) + pθe(θ) [∆x− b(θ)] . (9)
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Her payoff in the alternative mechanism is

xL + pθe∗(θ) [∆x− b∗] . (10)

Since the contract (0, b∗) either belongs to, or is a limit point of the original mechanism, no
agent can be better off by switching to (0, b∗) while holding the recommended effort fixed:

w(θ) + pθe(θ)b(θ)− cθe(θ) ≥ pθe(θ)b
∗ − cθe(θ).

(This inequality follows from type θ’s IC constraint while holding e(θ) fixed). Summing cθe(θ) to
both sides, it follows that the expected payment in the alternative mechanism cannot exceed
the one from the original mechanism if effort is held constant:

w(θ) + pθe(θ)b(θ) ≥ pθe(θ)b
∗. (11)

That is, if the agent chooses not to change effort (e∗(θ) = e(θ)), the principal obtains a higher
payoff in the alternative mechanism (10) than in the original one (9). Allowing effort to change,
the principal’s payoff in the alternative mechanism minus the payoff in the original mechanism
equals

pθe∗(θ) [∆x− b∗]− pθe(θ) [∆x− b(θ)] + w(θ) =
(
pθe∗(θ) − pθe(θ)

)
[∆x− b∗] + w(θ) + pθe(θ)b (θ)− pθe(θ)b∗

≥
(
pθe∗(θ) − pθe(θ)

)
[∆x− b∗]

,

(12)
where the inequality follows from (11).

By assumption, ∆x ≥ b∗. We claim that pθe∗(θ) ≥ pθe(θ). To wit, by the IC of type θ in the
original mechanism,

w(θ) + pθe(θ)b(θ)− cθe(θ) ≥ w(θ) + pθe∗(θ)b(θ)− cθe∗(θ),

and, by the definition of e∗(θ),

pθe∗(θ)b
∗ − cθe∗(θ) ≥ pθe(θ)b

∗ − cθe(θ).

Rearranging both inequalities, we can write them as:

(
pθe∗(θ) − pθe(θ)

)
b∗ ≥ cθe∗(θ) − cθe(θ) ≥

(
pθe∗(θ) − pθe(θ)

)
b(θ)

∴
(
pθe∗(θ) − pθe(θ)

)
[b∗ − b(θ)] ≥ 0.

Since b∗ is the supremum of bonuses, b∗ ≥ b(θ). Therefore, pθe∗(θ) ≥ pθe(θ). Hence, (12) implies
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that the principal’s payoff from each type θ is higher in the alternative mechanism even when
the agent chooses a different effort.

The proof concludes by verifying that an optimal mechanism exists. The proof of existence
follows arguments similar to Page (1992) and is given in the supplementary appendix.

Proofs of Theorems 2 and 3

In the proofs below, we will use the following facts:

1. Any contract that satisfies BFD is a Lipschitz function.

2. Lipschitz functions are absolutely continuous (and, hence, almost everywhere differen-
tiable) and we can apply the Fundamental Theorem of Calculus to them.

3. Integration by parts is a valid procedure between integrable and absolutely continuous
functions.

4. If a contract satisfies IC and LL, it also satisfies IR (because mine c
θ
e ≤ 0).

Proof of Theorem 2

We first introduce some notation. Let x := inf X (possibly−∞). Since any contract w : X → R+

that satisfies BFD is absolutely continuous, we can apply the fundamental theorem of calculus
and write w(x) = w(x) +

´ x
x
ẇ(y)dy. Hence, any such contract w is characterized by a “fixed

wage” w(x) ∈ R+ and “bonus” ẇ ∈ L∞+ (X).21 Using integration by parts, the payoff of a type-θ
agent who exerts effort e and gets contract (w(x), ẇ) equals

vθe(w(x), ẇ) := w(x) +

ˆ
ẇ(x)

(
1− F θ

e (x)
)
dx− cθe. (13)

Similarly, the principal’s payoff is

uθe(w(x), ẇ) := −w(x) +

ˆ
[1− ẇ(x)]

(
1− F θ

e (x)
)
dx. (14)

By MS, a type-θ agent who switches from effort ẽ to e while keeping the same contract (w(x), ẇ)

gains

vθe(w(x), ẇ)− vθẽ(w(x), ẇ) = [I(e, θ)− I(ẽ, θ)]

ˆ
ẇ(x)H(x)dx+ cθẽ − cθe. (15)

21L∞(X) is the space of all real-valued, measurable, and essentially bounded functions with domain X. L∞+ (X)
is the subset of non-negative functions in L∞(X).
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In turn, this switch affects the principal’s payoff by

uθe(w(x), ẇ)− uθẽ(w(x), ẇ) = [I(e, θ)− I(ẽ, θ)]

ˆ
[1− ẇ(x)]H(x)dx. (16)

Notice that the principal gains from shifting effort towards an effort associated with a higher
I(e, θ) if and only if ˆ

[1− ẇ(x)]H(x)dx ≥ 0. (17)

In this proof, we will verify that the principal benefits by substituting all contracts associated
with

´
[1 − ẇ(x)]H(x)dx > 0 by the contract that encourages the highest I(e, θ) and by sub-

stituting all contracts associated with
´

[1 − ẇ(x)]H(x)dx < 0 by the one that encourages the
lowest I(e, θ). To establish this result, not only do we need to verify that the principal benefits
by this substitution, but also that each type picks the contract designed for him.

Recall that a mechanism offers a contract wθ (x) and an effort recommendation eθ to each
type θ ∈ Θ. We will write ẇθ (x) := d

dx
wθ (x). Let (w, e) be a feasible mechanism. By BFD, the

set of all bonuses in this mechanism,

M := {ẇθ(x) : θ ∈ Θ} ,

is well defined and is composed of uniformly bounded functions (with a lower bound of 0 and an
upper bound of 1). The Banach-Alaoglu Theorem (Rudin (1991), p. 68) implies that its closure,
M̄, is weak* compact in L∞(X).

For each type θ ∈ Θ, there are two possibilities:
ˆ

[1− ẇθ(x)]H(x)dx ≥ 0 or
ˆ

[1− ẇθ(x)]H(x)dx ≤ 0.

In the first one, the principal would like to encourage an effort associated with a higher I; the
reverse is true in the second case.

Case 1)
´

[1−ẇθ(x)]H(x)dx ≥ 0. Let ẇ+ be a solution of the following maximization program:

max
ẇ∈M̄

´
ẇ(x)H(x)dx,

subject to
´

[1− ẇ(x)]H(x)dx ≥ 0.
(18)

Because the constraint of problem (18) is satisfied for wθ, the set of bonuses in M̄ that satisfy
this constraint is non-empty. Since M̄ is weak* compact, the objective function is a continuous
linear functional on L∞(X) and the constraint defines a weak* closed set. Therefore, (18) has a
solution ẇ+ ∈ M̄. In order to complete the definition of contract w+, we need to specify w+(x).
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Let (ẇθn) be a sequence inM that satisfies the constraint of (18) and weak*-converges to ẇ+.
We claim that (wθn(x)) is a bounded sequence in R+. Indeed, fix a type θ̄ ∈ Θ. By θ̄’s IC,

vθ̄e(θ̄)(wθ̄(x), ẇθ̄) ≥ vθ̄e(θ̄)(wθn(x), ẇθn)

which, by LL and assumption A2 (iv), gives

0 ≤ wθn(x) ≤ wθ̄(x) + ξ(θ),

since
´
ẇθ̄(x)

(
1− F θ̄

e(θ̄)
(x)
)
dx ≤

´ (
1− F θ̄

e(θ̄)
(x)
)
dx =

´
xdF θ̄

e(θ̄)
(x). Take a convergent subse-

quence of (wθn(x)) and let w+(x) denote its limit. Notice that w+ satisfies LL and BFD.
We now verify that replacing wθ by w+ increases the principal’s payoff. Let e+(θ) be an effort

that maximizes the agent’s payoff under contract w+ (for existence, see the online appendix):

vθe+(θ)(w
+(x), ẇ+) ≥ vθe(θ)(w

+(x), ẇ+),

which, by MS, can be written as

[
I(e+ (θ) , θ)− I (e (θ) , θ)

]ˆ
ẇ+(x)H (x) dx ≥ cθe+(θ) − cθe(θ). (19)

Similarly, because e(θ) is his effort choice with contract wθ(x),

[
I(e+ (θ) , θ)− I (e (θ) , θ)

]ˆ
ẇθ(x)H (x) dx ≤ cθe+(θ) − cθe(θ). (20)

Combining (19) and (20), we obtain

[I(e+ (θ) , θ)− I (e (θ) , θ)]
´
ẇθ(x)H (x) dx ≤ cθe+(θ) − cθe(θ)

≤ [I(e+ (θ) , θ)− I (e (θ) , θ)]
´
ẇ+(x)H (x) dx.

(21)
Since ẇ+ solves program (18), we have

ˆ
ẇ+(x)H(x)dx ≥

ˆ
ẇθ(x)H(x)dx.

Therefore, it follows from (21) that I(e+ (θ) , θ) ≥ I (e (θ) , θ).
We now establish that replacing contract wθ by w+ increases the principal’s payoff from type

θ. As in the proof of Theorem 1, we first show that, holding effort fixed, the principal is better
off with the substitution of contracts. Since w+ is the weak*-limit of sequence in C, the agent’s
utility is continuous in the weak* topology, and the original mechanism is incentive compatible,
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it follows that
vθe(θ)(wθ(x), ẇθ) ≥ vθe(θ)(w

+(x), ẇ+). (22)

Substitute the expression for the agent’s payoff and multiply both sides by −1:

−w+(x)−
ˆ
ẇ+(x)

(
1− F θ

e(θ)(x)
)
dx ≥ −wθ(x)−

ˆ
ẇθ(x)

(
1− F θ

e(θ)(x)
)
dx.

Add
´ (

1− F θ
e(θ)(x)

)
dx to both sides of this inequality:

− w+(x) +

ˆ [
1− ẇ+(x)

] (
1− F θ

e(θ)(x)
)
dx ≥ −wθ(x) +

ˆ
[1− ẇθ(x)]

(
1− F θ

e(θ)(x)
)
dx, (23)

which states that, holding effort e(θ) fixed, the principal gets a higher profit with contract
(w+ (x) , ẇ+) than with (wθ (x) , ẇθ).

Next, we show that the change in effort also benefits the principal. Because I (e+(θ), θ) >

I (e(θ), θ), and because ẇ+ solves program (18), the following inequality holds:

[
I
(
e+(θ), θ

)
− I (e(θ), θ)

]ˆ [
1− ẇ+(x)

]
H (x) dx ≥ 0.

Using MS, rewrite this inequality as
ˆ

[1− ẇ+(x)]
(

1− F θ
e+(θ)(x)

)
dx ≥

ˆ [
1− ẇ+(x)

] (
1− F θ

e(θ)(x)
)
dx, (24)

which shows that the principal gains fro the change in effort.
Combining (23) and (24), establishes that the principal’s profit from θ with the new contract

exceeds her profit with the original contract:

x− w+(x) +

ˆ
[1− ẇ+(x)]

(
1− F θ

e+(θ)(x)
)
dx ≥ x− wθ(x) +

ˆ [
1− ẇ+(x)

] (
1− F θ

e(θ)(x)
)
dx.

Case 2)
´

[1− ẇθ(x)]H(x)dx ≤ 0. Let w− be the solution of the minimization program:

min
ẇ∈M̄

´
ẇ(x)H(x)dx,

subject to
´

[1− ẇ(x)]H(x)dx ≥ 0.
(25)

As in problem (18), let ẇ− ∈ M̄ be a solution of problem (25) and define w−(0) following the
same procedure as used to obtain w+(0). Then, w− satisfies LL and BFD.
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By the same arguments as in Case 1, incentive compatibility implies that

[I(e− (θ) , θ)− I (e (θ) , θ)]
´
ẇ(θ, x)H (x) dx ≤ cθe−(θ) − cθe(θ)

≤ [I(e− (θ) , θ)− I (e (θ) , θ)]
´
ẇ−(x)H (x) dx

(26)
Moreover, since ẇ− solves (25),

ˆ
ẇ−(x)H(x)dx ≤

ˆ
ẇθ(x)H(x)dx,

so that, by (26), I(e− (θ) , θ) ≤ I (e (θ) , θ). Thus, by (16), the principal (weakly) gains from
replacing wθ by w−.

Consider the mechanism (w̄, ē):

w̄θ(x) =

{
w+(x), if

´
[1− ẇθ(x)]H(x)dx ≥ 0

w−(x), if
´

[1− ẇθ(x)]H(x)dx < 0

and

ē(θ) =

{
e+(θ), if

´
[1− ẇθ(x)]H(x)dx ≥ 0

e−(θ), if
´

[1− ẇθ(x)]H(x)dx < 0
,

where, as before, e±(θ) ∈ arg max
e

vθe(w
±(x), ẇ±). As previously shown, this mechanism raises

the principal’s payoff pointwise (i.e., for it raises the payoff conditional on each type) and satisfies
LL, and BFD. Moreover, if it satisfies incentive compatibility, it must also satisfy IR, since the
expected utility of type θ at contract w± who chooses effort e is

vθe(w
±(x), ẇ±) = w±(x) +

ˆ
ẇ(x)(1− F θ

e (x))dx− cθe.

Since w±(0) ≥ 0, ẇ± ≥ 0, and the agent must weakly prefer the recommended effort to the one
with cθe ≤ 0, IR must hold.

It only remains to show that this mechanism satisfies IC. Since e+ (θ) and e− (θ) maximize
type θ′s payoff conditional on each contract, we only need to verify that types with recommended
contract w+ do not benefit from deviating to w−:

ˆ
[1− ẇθ(x)]H(x)dx > 0 =⇒ vθe+(θ)(w

+(x), ẇ+) ≥ vθe−(θ)(w
−(x), ẇ−), (27)

and types with recommended contract w− do not wish to deviate to w+:
ˆ

[1− ẇθ(x)]H(x)dx < 0 =⇒ vθe−(θ)(w
−(x), ẇ−) ≥ vθe+(θ)(w

+(x), ẇ+). (28)
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In order to verify condition (27), let θ and θ̂ be types with
ˆ

[1− ẇθ(x)]H(x)dx ≥ 0 ≥
ˆ

[1− ẇθ̂(x)]H(x)dx.

Since type θ chose effort e(θ) in the original mechanism, incentive compatibility of the original
mechanism gives

vθe(θ)(wθ(x), ẇθ) ≥ vθe−(θ)(wθ̂(x), ẇθ̂).

Let (θ̂n) be a sequence such that
´

[1 − ẇθ̂n(x)]H(x)dx ≤ 0 for all n, (ẇθ̂n) weak*-converges to
w−(x) and (wθ̂n(x)) converges to w−(x). Again, incentive compatibility of the original mechanism
gives

vθe(θ)(wθ(x), ẇθ) ≥ vθe−(θ)(w
−(x), ẇ−), (29)

where we are using the continuity of vθe−(θ)(·, ·).
Now let (θn) be a sequence such that

´
[1−ẇθn(x)]H(x)dx ≥ 0 for all n, (ẇθ̂n) weak* converges

to w+(x), and (wθn(x)) converges to w+(x). Since E is a compact metric space, (e(θn)) has a
converging subsequence. Let ẽ ∈ E denote its limit and, with some abuse of notation, let (e(θn))

denote the subsequence itself. We claim that

lim
n→∞

vθe(θn)(wθn(x), ẇθn) = vθẽ(w
+(x), ẇ+).

Indeed, by the continuity of cθ· and the fact that lim
n→∞

wθn(x) = w+(x), we only need to show the
convergence of the integral term in (13). But notice that

´
ẇθn(x)

(
1− F θ

e(θn)(x)
)
dx−

´
ẇ+(x)

(
1− F θ

ẽ (x)
)
dx =

´
ẇθn(x)

(
F θ
ẽ (x)− F θ

e(θn)(x)
)
dx

+
´

[ẇθn(x)− ẇ+(x)]F θ
ẽ (x)dx.

By MS, the first term on the right hand side equals

[I(e(θn), θ)− I(ẽ, θ)]

ˆ
ẇθn(x)H(x)dx,

which converges to zero since I(·, θ) is a continuous function. The second term on the right hand
side also converges to zero because (ẇθn) weak* converges to ẇ+.

Since e+(θ) is an optimal effort choice for type θ under contract w+,

vθe+(θ)(w
+(x), ẇ+) ≥ vθẽ(w

+(x), ẇ+)

= lim
n→∞

vθe(θn)(wθn(x), ẇθn).
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Substituting this inequality in (29) for contract (wθn(x), ẇθn) and taking the limit, we obtain

vθe+(θ)(w
+(0), ẇ+) ≥ vθẽ(w

+(x), w+)

≥ vθe−(θ)(w
−(x), ẇ−)

,

verifying that (27) holds. The proof of (28) is analogous. Hence, the mechanism (w̄, ē) is IC.
To conclude the proof, we need to verify that an optimal mechanism exists. The proof, which

follows arguments similar to Page (1992), is given in the supplementary appendix.

Proof of Theorem 3

The agent’s IC constraint is

e (θ) ∈ arg max
e

ˆ
ẇ (x)

(
1− F θ

e (x)
)
dx− cθe.

Use MS to write the IC as

[I (e (θ) , θ)− I (e, θ)]

ˆ
ẇ (x)H(x)dx ≥ cθe(θ) − cθe.

Notice that if w implements effort e (·), then so does any other w̃ with
´
ẇ (x)H(x)dx =´

˙̃w (x)H(x)dx.
The principal’s expected cost from the contract w is

ˆ ˆ
Θ

ẇ (x)
(
1− F θ

e(θ) (x)
)
dµ(θ)dx.

Let (w∗, e) be an optimal mechanism and let K ≡
´
ẇ∗ (x)H(x)dx. Then, w∗ must also solve

the following program:

min
0≤ẇ(x)≤1

ˆ ˆ
Θ

ẇ (x)
(
1− F θ

e(θ) (x)
)
dµ(θ)dx. (30)

s.t. ˆ
ẇ (x)H(x)dx = K.

This is a more restricted program than searching for the optimal contract to implement e(·)
since it only looks at contracts that have a fixed

´
ẇ(x)H(x)dx. However, as noted above, any

such contract satisfies IC. Since the optimal contract is feasible in this program (by our choice
of K), it must be a solution.
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The optimality conditions are:

ẇ(x) = 0 =⇒ ξ(x) < 0

ẇ(x) = 1 =⇒ ξ(x) > 0

where
ξ(x) ≡ −

ˆ
Θ

(
1− F θ

e(θ) (x)
)
dµ(θ) + λH (x) . (31)

For each x ∈ X, there are two possibilities: H(x) = 0 or H(x) > 0. In the first case, ξ(x) ≤ 0.
Hence, we can only have ξ(x) > 0 if H(x) > 0.

Suppose that H(x) > 0, so that ξ(x) ≥ 0 if and only if ξ(x)
H(x)
≥ 0. Rearranging (31), gives

ξ(x)

H(x)
≥ 0 ⇐⇒

1− F̄e(θ) (x)

H (x)
≤ λ.

The expression on the RHS is not a function of x. Thus, for a debt contract to be optimal, it
suffices to show that the LHS is decreasing in x. Differentiating this expression, gives:

d

dx

(
1− F̄e(θ) (x)

H(x)

)
= −

1− F̄e(θ) (x)

H(x)

[
H ′(x)

H(x)
+

f̄e(θ) (x)

1− F̄e(θ) (x)

]
.

Hence, the LHS is decreasing if H′(x)
H(x)

+
f̄e(θ)(x)

1−F̄e(θ)(x)
≥ 0 for all θ. The following lemma concludes

the proof by showing that MLRP implies that this condition holds.

Lemma 4. Suppose that the family of distributions is ordered by FOSD, and the marginal dis-
tribution satisfies MLRP. Then, 1−F̄e(x)

H(x)
is decreasing in x for all e.

Proof. Recall that, under MS, the family of distributions satisfies MLRP if the ratio

f̄eL(x)

f̄eH (x)
= 1 +

H ′ (x)

f̄eH (x)

[
Ī(eH)− Ī(eL)

]
,

is decreasing for any eL, eH ∈ E with I (eL) < I (eH). Hence, MLRP is equivalent to H′(x)

f̄e(x)
being

decreasing for all e ∈ E. Therefore, for any x1 > x0,

H ′ (x1)

f̄e (x1)
≤ H ′ (x0)

f̄e (x0)
∴ H ′ (x1) f̄e (x0) ≤ H ′ (x0) f̄e (x1) .

Integrate this on x1 ∈ [x0, x̄] (where x̄ = supX):

ˆ x̄

x0

H ′ (x1) f̄e (x0) dx1 ≤
ˆ x̄

x0

H ′ (x0) f̄e (x1) dx1.
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Using the fact that H(x̄) = 0 and F̄e(x̄) = 1, we obtain:

−f̄e (x0)H (x0) ≤ H ′ (x0)
(
1− F̄e (x0)

)
∴
H ′ (x0)

H (x0)
+

f̄e (x0)

1− F̄e (x0)
≥ 0.

Since x0 is arbitrary, this is equivalent to 1−F̄e(x)
H(x)

being decreasing in x.

Proof of Proposition 1

In order to rewrite this model in the same terms as in Section 3, perform the change of variables:

x := S − (1 + λ)C.

We will write contracts in terms of the taxpayer’s net surplus x, instead of the firm’s production
cost C by letting Wθ(x) := wθ

(
S−x
1+λ

)
. Note that BFD can be rewritten as

0 ≤ ∂Wθ

∂x
(x) ≤ 1

1 + λ

at all points of differentiability of Wθ(·). The regulator’s payoff is
ˆ

[x− λWθ (x)] dGθ
e(θ) (x)− cθe(θ), (32)

where Gθ
e(x) := F θ

e

(
S−x
1+λ

)
.

Let (W, e) be a feasible mechanism. Construct W ∗(x) and e∗(θ) as in the proof of Theorem
2, and recall that I(e(θ), θ) ≤ I(e∗(θ), θ). Fix a type, say θ. The regulator’s payoff from type θ
in mechanism (W, e) is ˆ

[x− λWθ(x)]dGθ
e(θ)(x)− cθe(θ),

and her payoff from θ in the new mechanism is
ˆ

[x− λW ∗(x)]dGθ
e∗(θ)(x)− cθe∗(θ).

By MS and FOSD, I(·, θ) is an increasing function and, therefore, e(θ) ≤ e∗(θ), for all θ.
The agent’s IC constraint and weak* approximation (see the proof of Theorem 2) imply that

ˆ
Wθ(x)dGθ

e(θ)(x)− cθe(θ) ≥
ˆ
W ∗(x)dGθ

e∗(θ)(x)− cθe∗(θ),
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which can be rewritten as
ˆ
Wθ(x)dGθ

e(θ)(x)−
ˆ
W ∗(x)dGθ

e∗(θ)(x) ≥ cθe(θ) − cθe∗(θ). (33)

Using the regulator’s payoff (33), we can see that the regulator obtains a gain from θ when she
replaces the mechanism if and only if

ˆ
x
(
dGθ

e∗(θ)(x)− dGθ
e(θ)(x)

)
≥ λ

(ˆ
W ∗(x)dGθ

e∗(θ)(x)−
ˆ
Wθ(x)dGθ

e(θ)(x)

)
+
(
cθe∗(θ) − cθe(θ)

)
,

which, from inequality (33), holds if
ˆ
x
(
dGθ

e∗(θ)(x)− dGθ
e(θ)(x)

)
≥ (1 + λ)

(
cθe∗(θ) − cθe(θ)

)
. (34)

Using integration by parts, the effort that maximizes net-surplus (8) is

ē(θ) ∈ arg max
e

(1 + λ)−1

ˆ (
1−Gθ

e (x)
)
dx− cθe.

By our assumption that ē(θ) is unique and (8) is increasing in e < ē(θ), it suffices to show that
ē(θ) ≥ e∗(θ) in order to establish that (34) holds.

Since e∗ maximizes the payoff of the firm’s manager, if must give him a higher payoff than ē:
ˆ
Ẇ ∗ (x)

(
1−Gθ

e∗(θ) (x)
)
dx− cθe∗(θ) ≥

ˆ
Ẇ ∗ (x)

(
1−Gθ

ē(θ) (x)
)
dx− cθē(θ).

Similarly, because ē maximizes net surplus, we have

(1 + λ)−1

ˆ (
1−Gθ

ē(θ) (x)
)
dx− cθē(θ) ≥ (1 + λ)−1

ˆ (
1−Gθ

e∗(θ) (x)
)
dx− cθe∗(θ).

Using these two inequalities, we obtain
ˆ [

(1 + λ)−1 − Ẇ ∗ (x)
] (
Gθ
e∗(θ) (x)−Gθ

ē(θ) (x)
)
dx ≥ 0.

By BFD, the term inside the first brackets are non-negative for all x. Since Gθ
e is ordered by

FOSD, the term inside the second brackets have a constant sign, which is positive if ē(θ) ≥ e∗(θ)

and negative if ē(θ) ≤ e∗(θ). Then, the inequality above implies that ē(θ) ≥ e∗(θ), concluding
the proof.
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Proof of Proposition 2

The proof follows the same steps as the proof of Theorem 3. Use MS to write the IC constraint
as

[I (e (θ) , θ)− I (e, θ)]

ˆ
ẇ (C)H(C)dC ≥ cθe(θ) − cθe.

Thus, if w implements effort e (·), then so does any other w̃ with
´
ẇ (C)H(C)dC =

´
˙̃w (C)H(C)dC.

Let (w∗, e) be an optimal mechanism and let K ≡
´
ẇ∗ (C)H(C)dC. Then, w∗ must also solve

the following program:

min
−1≤ẇ(C)≤0

ˆ ˆ
Θ

ẇ (C)
(
1− F θ

e(θ) (C)
)
dθdC

subject to ˆ
ẇ (C)H(C)dC = K,

where we removed from the objective function all terms that are not affected by ẇ. As in the
proof of Theorem 3, this is a restricted program since it takes effort as fixed and only considers
contracts with a fixed

´
ẇ(C)H(C)dC. Notice that this is exactly the same program as (30),

except that now ẇ is in [−1, 0] instead of [0, 1]. The same argument establishes that there
exists C̄ such that ẇ(C) = −1 if C ≤ C̄ and ẇ = 0 otherwise (recall that we assumed that e
orders F by FOSD in this model). Integrating and using the binding LL constraint, we obtain
w (C) = max

{
C̄ − C; 0

}
.

C. Examples

Screening with Pure Adverse Selection

This appendix shows that, with pure adverse selection, it is typically sub-optimal to offer a
single contract even when there are only two outputs. Thus, moral hazard is important for
the simplicity result from Theorem 1. We consider a simple counterexample. There are two
states (H and L, which will be referred to as “high” and “low” outputs), two efforts (0 and 1, or
“low” and “high” efforts), and two types (A and B). The effort costs are cA1 = 1, cB1 = 2

3
, and

cA0 = cB0 = 0.

Given a high effort, the probability of success for type A is pA1 = 2
3
and for type B is pB1 = 1

3
.

We assume that the project fails with a high enough probability if they exert low effort and we
take xH − xL to be large enough for the principal to want to implement high effort from both
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types. Then, the optimal mechanism must solve the following program:

min
wiH ,w

i
L≥0

2wAH + wAL + wBH + 2wBL

subject to 2wAH + wAL ≥ 2wBH + wBL
wBH + 2wBL ≥ wAH + 2wAL
2wAH + wAL ≥ 3

wBH + 2wBL ≥ 2.

The two first constraints require A and B to prefer to report their types truthfully (IC con-
straints). Because effort is observable, the principal does not need to worry about deviations on
effort. Then, it is no longer the case that LL implies IR. The last two constraints are precisely
the IR constraints.

It is straightforward to show that the unique solution offers the following payments: wAH = 3
2
,

wAL = 0 and wBH = wBL = 2
3
. Moreover, this mechanism is no longer feasible if effort is not

observable. In fact, both types would choose e = 0 if offered these contracts and effort was
unobservable.

Example 1 (continuation)

Let wθ = (wθH , w
θ
M , w

θ
L) denote the vector of payments to the agent. Their conditional probability

distributions are given in the text. There are six ICs constraints that must be checked.

• ICs preventing deviations in effort for a fixed contract:

2wAH + 2wAM + wAL
5

− 1 ≥ wAH + wAM + wAL
3

, (35)

2wBH + 3wBM + wBL
6

− 1 ≥ wBH + wBM + 3wBL
3

. (36)

• ICs preventing deviations in both contracts and efforts:

2wAH + 2wAM + wAL
5

− 1 ≥ wBH + wBM + wBL
3

, (37)

2wBH + 3wBM + wBL
6

− 1 ≥ wAH + wAM + wAL
5

. (38)

• ICs preventing deviations in contract for a fixed effort:

2wAH + 2wAM + wAL ≥ 2wBH + 2wBM + wBL , (39)

2wBH + 3wBM + wBL ≥ 2wAH + 3wAM + wAL . (40)
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The principal’s objective is to minimize her cost

2wAH + 2wAM + wAL
5

+
2wBH + 3wBM + wBL

6

subject to the constraints above. This is a standard linear program, and it is straightforward to
check that the solution is wA = (0, 0, 15) and wB = (0, 6, 6), which gives the principal a cost of
11.

To verify that we can’t implement the optimal mechanism with a single contract, consider
the principal’s program if we impose that she gives the same contract (wH , wM , wL) to both
types. The principal’s cost is then

2wH + 2wM + wL
5

+
2wH + 3wM + wL

6
=

11wL + 27wM + 22wH
30

.

Since there is only one contract, the only relevant IC is the one preventing each type from
choosing a different effort:

2wH + 2wM + wL
5

− 1 ≥ wH + wM + wL
3

,

and
3wM + wL

6
− 1 ≥ wM + 3wL

3
.

It is straightforward to verify that the solution is wL = 0, wM = 6, wH = 9, which gives the
principal a cost of 12. Thus, offering the best single-contract mechanism yields a higher cost
than offering the optimal menu of contracts in this example.

D. Multiplicative Separability

Recall the ordering condition presented in the text, which we will refer to as the ordering (O)
condition:

Definition 2. The distribution of outputs satisfies the ordering (O) condition if given contracts
w and w̃ that satisfy BFD and LL and e, ẽ ∈ E, if there exists θ ∈ Θ for which

ˆ
w(x)

(
dF θ

e (x)− dF θ
ê (x)

)
dx ≥

ˆ
w̃(x)

(
dF θ

e (x)− dF θ
ê (x)

)
,

then, for all θ̃,
ˆ
w(x)

(
dF θ̃

e (x)− dF θ̃
ẽ (x)

)
dx ≥

ˆ
w̃(x)

(
dF θ̃

e (x)− dF θ̃
ẽ (x)

)
.
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Substitution establishes that MS implies O. The next lemma shows that the reverse is also
true, so these conditions are equivalent to each other:

Lemma 5. MS and O are equivalent.

Proof. First consider the case E = {0, 1} and let θ ∈ Θ. Since F θ
1 (x)− F θ

0 (x)→ 0, as x→ −∞
and x→∞, integration by parts gives

ˆ
w(x)

(
dF θ

1 (x)− dF θ
0 (x)

)
=

ˆ
ẇ(x)

(
F θ

0 (x)− F θ
1 (x)

)
dx

for any contract w : X → R+ that satisfies BFD and LL, i.e., ẇ ∈ L∞(X) and 0 ≤ ẇ(x) ≤ 1, for
almost all x ∈ X. Define the linear functional ϕθ : L∞(X)→ R by ϕθ(ẇ) =

´
ẇ(x)

(
F θ

0 (x)− F θ
1 (x)

)
dx.

Condition O implies that

ϕθ(ẇ) = 0, ∀ẇ ∈ L∞+ (X) if and only if ϕθ̃(ẇ) = 0, ∀ẇ ∈ L∞+ (X),

for all θ, θ̃ ∈ Θ. Since ẇ(x) = ẇ+(x) − ẇ−(x), where ẇ+(x) = max {ẇ(x), 0} and ẇ−(x) =

max {−ẇ(x), 0}, the previous equivalence is also true replacing L∞+ (X) by L∞(X). Hence,
functionals ϕθ and ϕθ̃ are equivalent, for all θ, θ̃ ∈ Θ, i.e., there exist constants λθ, λθ̃ > 0 and
linear functional ϕ in L1(X) such that ϕθ = λθϕ and ϕθ̃ = λθ̃ϕ. Indeed, we have that the
null spaces of ϕθ and ϕθ̃ are the same, which we denote by N . By the Rank-Nullity Theorem,
there exists v ∈ L∞(X)\N such that L∞(X) = [v] ⊕ N , where [v] is the subspace generated
by vector v and ⊕ represents the direct sum between vector spaces. Let ϕ be the unique
linear functional such that ϕ(v) = 1 and ϕ(n) = 0 for all n ∈ N . Define λθ = ϕθ(v) and
λθ̃ = ϕθ̃(v). Notice that λθ and λθ̃ have the same sign because ϕθ and ϕθ̃ “point” in the
same direction according to O, which we can assume to be positive without loss of generality
(otherwise, we define ϕ such that ϕ(v) = −1). The result then follows immediately. For a
general set E, we can apply the same argument to show that the linear functionals ϕθ,e,ê defined
by ϕθ,e,ê(ẇ) =

´
ẇ(x)

(
F θ
ê (x)− F θ

e (x)
)
dx are equivalent, for all θ ∈ Θ and e, ê ∈ E.

E. Converse of Theorem 3

We will write 1 to denote the indicator function. Let Ī (e) :=
´
I (e, θ)µ (dθ) , and let ϕ(e, x) :=

1−F̄e(x)
H(x)

+ Ī(e). By MS, we have

1− F θ
ẽ (x)

H (x)
+ I(ẽ, θ) =

1− F θ
e (x)

H (x)
+ I (e, θ) ∀ẽ, e, θ, x.
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Integrating over θ, gives ϕ (ẽ, x) = ϕ (e, x) for all e, ẽ. Therefore, ϕ depends only on x and we
will drop the dependency on e. The following result determines characterizes MLRP:22

Lemma 6. Suppose F θ
e satisfies MS and is ordered by FOSD. F θ

e satisfies MLRP if and only if
ϕ′ (x) ≤ 0 for all x ∈ X.

Therefore, the distribution fails MLRP if and only if ϕ′(x0) > 0 for some x0. Other than
MS, we will assume that the distribution satisfies the following condition:

Definition 3. Let F θ
e satisfy MS. F θ

e is regular if[
1 +

´
1ϕ(x0)≥ϕ(x)H(x)dx´

H(x)dx

]
Ī(e∗) ≥ Ī(e∗) +

´
1ϕ(x0)≥ϕ(x)ϕ(x)H(x)dx´

H(x)dx

for some e∗, e∗ ∈ E and x0 ∈ X with ϕ′ (x0) > 0.

The regularity condition ensures that there exist cost functions for which the contract that
always pays zero is not optimal. The following proposition presents the partial converse to
Theorem 3:

Proposition 3. Suppose the output distribution satisfies MS, is ordered by FOSD, and is regular.
If the marginal distribution does not satisfy MLRP, there exists a cost function c : Θ, E → R+

for which the optimal mechanism does not give the principal a debt contract.
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Online Appendix

Existence with Two Outcomes

From Lemma 3 in the proof of Theorem 1, there is no loss of generality in restricting the set of
mechanisms to those consisting of a single contract that pays zero if output is low and a bonus if
the output is high. Each mechanism consists of a bonus b ∈ [0,∆x] and effort recommendation
(which is the agent’s preferred effort given the offered bonus).

Let vθe(b) := pθeb − cθe denote the payoff of type θ who chooses effort e. By Assumption 1,
vθ· (·) : [0,∆x] × E → R is continuous and, for each (b, e) ∈ [0,∆x] × E, v·e(b) : Θ → R is
B(Θ)-measurable.

Since vθ· (b) continuous and E is compact, the IC constraint gives, for each fixed bonus, at
least one optimal effort e (θ). Let V θ(b) := max

e∈E
vθe(b) be the payoff of type θ under bonus b. Let

(θ, b) → e∗(θ, b) denote the non-empty, compact-valued mapping specifying the optimal efforts
of type θ under bonus b:

e∗(θ, b) = {e ∈ E; vθe(b) ≥ V θ(b)}.

By Berge’s Maximum Theorem, b → V θ(b) is continuous for each θ and b → e∗(θ, b) is upper
semicontinuous on [0,∆x] for each θ.

Let uθe(b) := pθe(∆x− b) denote the principal’s payoff from a type θ ∈ Θ who is offered bonus
b ∈ [0,∆x] and exerts effort e ∈ E. By Assumption 1, for each θ ∈ Θ, uθ· (·) : [0,∆x] × E → R
is continuous and, for each (b, e) ∈ [0,∆x]× E, u·e(b) : Θ→ R is B(Θ)-measurable. Notice that
p is µ-integrable on Θ× E because |pθe| ≤ 1 on Θ× E.

Since uθ· (b) continuous and e∗(θ, b) is compact, for each (θ, b), the problem:

max
e∈e∗(θ,b)

uθe(b)

has a solution, say eθb . Thus, for each bonus b, the principal can provide the agent an effort
recommendation function eθb : Θ→ E, which specifies an effort to each type. Since eθb ∈ e∗(θ, b)
for all θ, no type has an incentive to deviate from the recommended effort.

To choose the best effort recommendation, the principal selects, for each (θ, b) ∈ Θ× [0,∆x],
the effort that maximizes her payoff. Let

U θ(b) := max
e∈e∗(θ,b)

uθe(b)

denote the principal’s maximum payoff among all efforts that are incentive compatible to type θ
when the bonus equals b. Since u is B(Θ)×B([0,∆x])×B(E)-measurable and continuous on E,
and e∗(·, ·) is B(Θ)×B([0,∆x])-measurable (see Nowak (1984), Lemma 1.10) and compact-valued,
it follows that U is B(Θ) × B([0,∆x])-measurable (see Himmelberg et.al. (1976), Theorem 2).
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Moreover, since e∗(θ, ·) is upper semicontinuous on [0,∆x], it follows from Berge (1963), Theorem
2, that U θ(·) is upper continuous on [0,∆x] for each θ. Finally, since the principal’s payoff u is
integrably bounded, U : Θ× [0,∆x]→ R is also integrably bounded on Θ× [0,∆x].

Given these observations, the principal’s problem consists of maximizing a continuous func-
tion over a compact interval,

max
b∈[0,∆x]

ˆ
U θ(b)dµ(θ),

which must then have a solution.

Existence with Multiple Outputs

The proof follows similar steps as in the two-output case. Let

W := {w : X → [0,∆x] satisfying BFD, LL and w(0) = 0}

denote the space of contracts. As noticed in the proof of Theorem 2, for each w ∈ W , ẇ ∈ L∞(X).
Consider the following topology in W : a net (wn) converges to w in W if and only if (ẇn)

converges to ẇ in the (L∞(X), L1(X))-weak* sense. Under this topology, W is metrizable and
compact (see Rudin (1991), Theorem 3.16). Let B(W) be the Borel σ-field in W with respect
to the metric induced by this topology.

Let vθe(w) :=
´
w(x)dF θ

e (x) − cθe. By Assumption 2, vθ· (·) is continuous on W × E, and, for
each (w, e) ∈ W ×E, v·e(w) is B(Θ)-measurable. Since E is compact and vθ· (w) continuous, the
agent’s effort choice problem has a solution. Let V θ(w) := sup

e∈E
vθe(w) denote the utility of type

θ. Let the non-empty, compact-valued mapping (θ, w)→ e∗(θ, w) denote the “reaction function”
of type θ:

e∗(θ, w) := {e ∈ E : vθe(w) ≥ V θ(w)}.

By Berge’s Maximum Theorem, w → V θ(w) is continuous for each θ and w → e∗(θ, w) is upper
semicontinuous on W for each θ.

Let uθe(w) :=
´

(x − w(x))dF θ
e (x) denote the principal’s payoff. By Assumption 2, for each

θ ∈ Θ, uθ· (·) is continuous on W × E, and for each (w, e) ∈ W × E, u·e(w) is B(Θ)-measurable.
By Assumption 2, u is µ-integrable on Θ× E (i.e., |uθe(w)| ≤ ξ(θ) on Θ×W × E where ξ is an
integrable real-valued function defined on Θ).

Since e∗(θ, w) is compact and uθ· (w) continuous, for each (θ, w), the problem sup
e∈e∗(θ,w)

uθe(w)

has a solution, say eθw. Thus, for each contract w, the principal can provide the agent with a
list, {eθw; θ ∈ Θ}, of recommended efforts. Since eθw ∈ e∗(θ, w) for each θ ∈ Θ, a type-θ agent has
no incentive to take an effort other than the one requested by the principal eθw (i.e., the agent is
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obedient). To choose the best list of requests, the principal must therefore solve the problem

sup
e∈e∗(θ,w)

uθe(w)

for each (θ, w) ∈ Θ×W . Let U θ(w) := sup
e∈e∗(θ,w)

uθe(w). Since u is B(Θ)×B(W)×B(E)-measurable

and continuous on E, and since e∗(·, ·) is B(Θ)×B(W)-measurable (see Nowak (1984), Lemma
1.10) and compact-valued, it follows that U is B(Θ)×B(W)-measurable (see Himmelberg et.al.
(1976), Theorem 2). Moreover, since e∗(θ, ·) is upper semicontinuous on W , it follows from
Theorem 2 of Berge (1963) that U θ(·) is upper semicontinuous on W for each θ. Finally, since
the principal’s payoff u is integrably bounded, U : Θ ×W → R is also integrably bounded on
Θ×W .

With these observations, we can write the principal’s program as

sup
w∈W

ˆ
U θ(w)dµ(θ)

which has a solution since W is compact.

Proofs from Appendix E

Proof of Lemma 6.

Sufficiency is immediate. To establish the necessity part, let e ∈ E and x0 ∈ X be such that the
derivative of 1−F̄e(x)

H(x)
at x = x0 is positive:

− f̄e(x0)

H(x0)
− (1− F̄e(x0))H ′(x0)

H(x0)2
> 0,

Because H(x) ≥ 0 (ordering by FOSD), we have

H ′(x0)

f̄e(x0)
< − H(x0)

1− F̄e(x0)
≤ 0,

which shows that H′(x0)

f̄e(x0)
< 0, contradicting MLRP. e

Proof of Proposition 3.

Fix e∗ ∈ E and x0 ∈ X that satisfy the regularity condition. Construct the contract w∗ by
setting w∗(0) = 0 and

ẇ∗(x) =

{
1, if ϕ(x0) ≥ ϕ(x)

0, if otherwise
. (41)
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Let e (θ) = e∗. Pick the following cost function:

cθe =


0 if e = e∗

[I(e∗, θ)− I(e∗, θ)]
´
ẇ∗(x)H(x)dx if e = e∗

∞ if otherwise
.

Type θ’s IC constraint is

[I(e (θ) , θ)− I(e, θ)]

ˆ
ẇ∗(x)H(x)dx ≥ cθe(θ) − cθe, ∀e.

By our choice of the cost function, the IC holds with equality at e = e∗ and inequality at other
efforts. From the proof of Theorem 3, w∗ is the cost-minimizing contract that implements e = e∗.

The principal’s payoff from implementing e = e∗ is
ˆ
xdF̄e∗(x) =

ˆ [
1− F̄e∗(x)

]
dx.

Her payoff from implementing e = e∗ is
ˆ

[x− w∗(x)]dF̄e∗(x)dx =

ˆ
[1− ẇ∗(x)]

[
1− F̄e∗(x)

]
dx.

The difference in the principal’s payoff from implementing e∗ and e∗ equals

[Ī(e∗)− Ī(e∗)]

ˆ
H(x)dx−

ˆ
ẇ∗(x)

[
1− F̄e∗(x)

]
dx

= [Ī(e∗)− Ī(e∗)]

ˆ
H(x)dx−

ˆ
[ϕ(x0)−ϕ(·)≥0]

[
1− F̄e∗(x)

]
dx ≥ 0,

where the equality uses (41) and the inequality follows by the regularity condition. Thus, it is
optimal for the principal to implement e(θ) = e∗. Next, we verify that w∗ is not a debt contract.
There are two possible cases:

• Suppose x0 is the only solution to the equation ϕ(x) = ϕ(x0) in the interior of X. Then
w∗(x) = min {x, x0}, which is a debt contract to the agent so the principal’s payment
(max {x− x0, 0}) is not a debt contract (it is a call option).

• Now suppose that ϕ(x) = ϕ(x0) has more than one solution in the interior of X. Then,
there exists a non-degenerate interval [a, b] ⊂ int (X) with ẇ∗(x) = 1 for x ∈ [a, b] and
ẇ∗(x) = 0 for some x > b, which shows that the principal does not get a debit contract. e
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