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Abstract

Many lenders operating in unsecured credit markets utilize dynamic incentives, whereby incentives to

repay are generated by promising access to future loans. In this project, I explore the impact of dynamic

incentive schemes on borrower behavior in the digital credit market. To do so, I analyze unique data

from a digital lender in Africa who relies heavily on dynamic incentives to encourage repayment. I use a

series of quasi-experiments induced by policy nonlinearities to estimate the effect of progressive lending

policies on borrower repayment decisions. I find that new borrowers who receive a larger initial loan

are more likely to default on that loan, consistent with positive moral hazard and repayment burden

effects. By contrast, repeat borrowers who receive a larger loan (relative to their previous loan) are

actually less likely to default. I provide evidence that this reflects a strategic repayment motive, whereby

borrowers repay in order to get access to larger loans in the future. I then write down and estimate a

dynamic structural model consistent with my empirical results. I use the estimation results to simulate

the profit-maximizing dynamic lending scheme for the lender in this setting.
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1 Introduction

Many lending relationships are dynamic in nature, involving one-period contracts but repeated interactions

over time. In such settings, lenders often try to improve repayment performance through the use of dynamic

incentives, defined as incentives to repay generated by increased access to future loans. Dynamic incentives

encompass two distinct policies, usually used in tandem as a carrot-and-stick strategy: lenders threaten to

exclude defaulting borrowers from access to additional credit, and start borrowers at small initial loan sizes

but promise progressively larger loans conditional on repayment (called progressive lending). The purpose of

dynamic incentives is to mitigate information asymmetries by increasing the opportunity cost of default and

enabling screening on early, small loans. At the same time, however, dynamic incentives may have perverse

effects by encouraging strategic borrowing behavior, whereby borrowers repay a series of loans until they have

worked their way up to a large loan size and then “cash out” by defaulting. Despite the theoretical ambiguity,

there is limited empirical work on the impact of dynamic incentives on borrower behavior.1 More practically,

a paramount concern for many lenders remains the determination of an optimal dynamic incentive scheme.

This paper provides novel empirical insight into how borrowers respond to dynamic incentives. I explore

this issue using a unique proprietary dataset from a digital credit provider. As new financial technology

(“fintech”) products such as digital credit have only recently begun to transform consumer finance across the

world, this setting is both important and under-studied. Digital credit refers to unsecured loans where credit

decisions are made instantaneously based on mobile data and loans are requested, delivered, and repaid

electronically. It has proliferated particularly rapidly in developing countries, made possible by mobile

technology, improved data analytics, and new delivery channels. Millions of low-income individuals can now

access small loans with just a few clicks on a mobile phone. However, digital lenders face unique challenges

in encouraging repayment. The small size and remote nature of borrower-lender interactions negate most

typical repayment enforcement mechanisms2 and prevent any in-person screening or the collection of “soft”

information. Additionally, credit information sharing is often nascent in the settings in which these lenders

operate; even when credit reporting bureaus (CRBs) are present, most digital credit borrowers don’t have

access to loans from the formal sector, so the threat of a negative report is less impactful. As a result, digital

lenders primary recourse for discouraging default is the use of dynamic incentives, making digital credit an

ideal setting for studying the design and effectiveness of such schemes.

To do so, I first measure the impact of dynamic incentive policies on borrower repayment decisions using

a series of nonlinearities, either across time or across borrowers, in the lender’s policies. Taken together, the

results imply that borrowers behave strategically when faced with dynamic incentives, and that this behavior

depends critically on the stage of the relationship between the borrower and the lender. Next, I write down

a simple model of borrower behavior to capture these empirical results. In this model, borrowers vary in the

value they place on future loans and are more likely to repay their current loan when they expect to move
1Zinman (2014) argues that a major shortcoming in the existing literature “is the lack of empirical evidence on the extent

to which dynamic contracting mediates the effects of asymmetric information”.
2Examples include collateralization, the threat of legal action, group liability, and social sanctions.
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up to a larger loan size in the future. The model captures a tradeoff in loan size growth in the loan ladder

schedule: if growth is too gradual, the opportunity cost of defaulting today is low, so even those types that

most value future loans choose to walk away; conversely, if it is too rapid, then borrowers have an incentive

to wait longer to default and then do so at much larger loan sizes. Finally, I use the structure of the model

to estimate the distribution of the value placed by borrowers on access to future loans from a given lender.

I then use this estimated distribution to determine some features of an optimal dynamic lending scheme for

the lender in this setting.

While I focus on dynamic incentives as utilized by digital credit providers, my analysis is more broadly

applicable to many other unsecured lending markets. Use of dynamic incentives is particularly common

among lenders in developing countries, where most credit is unsecured, credit information sharing is scarce,

and legal recourse is more limited. For instance, dynamic incentives are a standard feature of the canonical

microfinance contract. It is well documented that most microfinance lenders permanently exclude any

defaulters and use progressive lending to reward repayers.3 However, while recent work has quantified the

impact of the other enforcement mechanisms used by microfinance institutions, such as group lending, weekly

meetings, and high-frequency repayment, there has been limited empirical focus on the dynamic incentives

piece of the puzzle.4

This paper also provides novel insight into the fintech sector, and specifically how fintech companies can

disrupt the consumer lending industry. The number and financial resources of fintech start-ups has grown

exponentially in recent years, by one count increasing from 800 companies to over 2000 over the course of

2015 alone (McKinsey & Co., 2015) and receiving more than 50 billion dollars in total funding between

2012 and 2016 (McKinsey & Co., 2017). The disruptive power of digital lenders stems from their ability

to provide loans at scale to a much broader set of borrowers. They achieve this by using data science and

machine learning to generate two main advantages relative to traditional lenders: dramatic cost reductions

in loan provision and improved risk scoring of borrowers. By reducing overhead costs and focusing on small,

short term loans, the amount of capital needed to acquire even a large number of borrowers is relatively low.

Machine-learning based risk-scoring technologies utilizing alternative data allow lenders to vastly expand the

feasible set of borrowers, to include those with no formal financial history or that face significant geographical

barriers in accessing to traditional lenders. Consistent with findings by Björkegren and Grissen (2015), my

empirical results document that these risk scores work, in the sense that they are highly predictive of default;

this allows digital lenders to maintain sound risk statistics even while expanding access.

I utilize a unique dataset that is particularly rich in both breadth and depth with regards to individual

borrowing behavior over time. It contains detailed information on borrowing and repayment decisions and
3For instance, Armendáriz and Morduch (2005) show that Grameen Bank provides borrowers in Bangladesh with a continuous

sequence of loans that increase quickly in size.
4Field and Pande (2008) find no significant difference between repayment rates amoung weekly and monthly repayers.

Feigenberg et al. (2013) find that a higher frequency of group meetings leads to stronger social cohesion and group risk-sharing,
and thus lower default rates. Field et al. (2013) show that relaxing the requirement that borrowers start repaying their loan
immediately leads to higher profits but also higher default rates. Giné and Karlan (2014) find no difference in repayment rates
between group liability and individual liability loans. See Banerjee (2013) for additional references.
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loan characteristics for 400 thousand borrowers and two million loans. For each borrower, I am able to

observe the risk score assigned by the lender’s data-based algorithms, the sequence and timing of loans taken

out, subsequent repayment decisions, and various demographic characteristics. On the lender’s side, I have

full information on the structure of the loan ladder and and all relevant credit policies.

During the sample period that I focus on in this paper,5 the lender relies primarily on both forms of

dynamic incentives to enforce repayment. All borrowers start out at a small initial loan size of $10 or

less. Borrowers who repay a sufficient number of installments of their current loan on time proceed up

the loan ladder to a larger loan, to a maximum possible loan size of $500. Borrowers who default are

blocked permanently from any future credit from this lender. Critically for my empirical strategy, the lender

frequently experiments with its progressive lending policies - both the structure of the loan ladder and how

borrowers progress along it.

My empirical analysis relies on a series of natural experiments induced by certain aspects of the lender’s

policies, as well as temporary, unannounced policy changes made by the lender. I use this quasi-experimental

variation to estimate the causal impact of changing the two key components of the progressive lending scheme:

the initial loan size and the loan ladder slope. Three key results emerge. First, I find that giving a larger

initial loan to new borrowers leads to a higher default rate on that loan. This is consistent with positive

moral hazard and repayment burden effects, as documented elsewhere in the literature.6 By contrast, I find

that giving a larger loan to repeat borrowers - which amounts to making the loan ladder steeper - results in a

lower default rate on that loan. I provide evidence that the explanatory mechanism is a strategic repayment

motive: borrowers are more likely to repay when they expect to receive a larger loan next time, and a larger

current loan increases their expectations of future loan growth and thus increases the value of repaying their

current loan. It also suggests that the stage of dynamic relationship matters when considering the impact of

loan size on repayment. Finally, a steeper loan ladder, while reducing default rates on early loans, actually

results in higher borrower-level default rates. This suggests that progressive lending doesn’t mitigate overall

default risk but does cause borrowers to shift the timing of when they default.

I next write down a dynamic model of my setting that captures these empirical results. The model has

three key elements. First, the lender relies on progressive lending and full threat of exclusion of defaulters

to incentivize repayment. Second, borrowers vary in the value they place on access to future loans from the

lender, and thus how responsive to dynamic incentives they are. Third, borrowers vary in credit needs. Each

borrower has a maximum number of loans that they need (or equivalently, that they can afford to repay),

but do not know this cap until they receive a signal that they have reached it. This generates an additional

reason for borrowers to default. Neither of these borrower characteristics is directly observable by the lender.

This model generates several key predictions. First, it can be shown that an optimal loan ladder exists.

This reflects a tradeoff in loan size growth, or equivalently, the slope of the loan ladder. If loan growth is too
5The sample period is defined in Section 3.3.
6Examples include Karlan and Zinman (2009) in the South African consumer credit market and Adams et al. (2009) in the

US sub-prime auto loan market.
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gradual (the loan ladder is relatively flat), then the opportunity cost of defaulting today is relatively low, so

even borrowers that most value future loans may default. In the most extreme case, everyone defaults early

on, so the lender makes losses and has no customers remaining. Conversely, if loan growth is too quick (the

loan ladder is relatively steep), borrowers wait a long time to default, and then to do so at much larger loan

sizes. Second, the model generates complementary explanations for the different observed default outcomes

when borrowers receive a larger initial loan versus a larger repeat loan (which is equivalent to facing a steeper

loan ladder). The first-order cause relates to selection, such that the set of new and repeat borrowers differ.

A second-order explanation is that the information set of borrowers differs between the first and subsequent

loans. New borrowers have no direct information yet about the future path of loan sizes, whereas repeat

borrowers in the model use past loan growth to form expectations about future loan growth.

With a few additional assumptions, I am able to estimate the model structurally in order to simulate

the profit-maximizing dynamic incentive scheme from the lender’s perspective. Specifically, I estimate the

distribution of borrowers’ net outside options and the probability of reaching their maximum loan cycle in

each period. I then show that the lender minimizes losses on the first loan by offering a smaller loan size,

but maximizes overall profits with a combination of a larger initial loan and a moderate loan ladder slope.

The rest of the paper is organized as follows. Section 2 summarizes the relevant related literature.

Section 3 introduces the setting and discusses the data used in the empirical analysis. Sections 4 and 5

discuss the empirical analyses of the impact of changing the initial loan size and loan ladder progression

policies, respectively. Section 6 presents a dynamic discrete choice model of borrower behavior in this

setting. Section 7 outlines the structural estimation exercise, and Section 8 uses the results of this exercise

to frame the empirical results and simulate an optimal progressive lending scheme for the lender in this

setting. Section 9 concludes.

2 Related Literature

This paper most directly contributes to the predominantly theoretical literature on dynamic incentives. The

notion that unsecured debt can be self-enforced in the case of repeated interactions was first formalized by

Eaton and Gersovitz (1981) in the context of sovereign debt markets, sparking a robust body of research that

further developed the idea. Besley (1995) and Morduch (1999) highlight the importance of dynamic incentives

in credit markets in developing countries. Hulme and Mosley (1996) and Armendáriz and Morduch (2005)

model dynamic incentives in the microfinance context. Tedeschi (2006) derives conditions under which the

optimal period of exclusion after strategic default by a microfinance client is less than infinite. Another line

of research, including Karaivanov and Townsend (2014) and Albuquerque and Hopenhayn (2004), consider

dynamic lending relationships more broadly, testing for different types of dynamic frictions and deriving

optimal contracts in such settings.

Focusing on sovereign debt, Bulow and Rogoff (1989) highlight an important limitation of dynamic
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incentives. They show that the threat of exclusion itself is not sufficient to prevent default, because a

borrower can save the money she would have repaid to the lender and instead use it in place of obtaining

another loan. For dynamic incentives to work, it must be the case that the rate of loan growth exceeds the

interest rate on savings, or put another way, the borrower is not able to scale up their own resources faster

than the lender can. Bond and Krishnamurthy (2004) explore in more detail the assumptions required to

give dynamic incentives teeth.

The two most closely related theoretical papers are Ghosh and Ray (2016) and Shapiro (2015). Both

focus on dynamic incentives in a competitive lending market; in Ghosh and Ray, the pool of credit providers

is composed of informal moneylenders, whereas in Shapiro they are microfinance providers. Each starts

with exclusion of defaulters as a primitive, and shows that the efficient equilibrium involves progressive

lending. Shapiro then discusses the impact of borrowing from two lenders simultaneously, while Ghosh and

Ray show the implications of enabling information sharing between lenders. Unlike this paper, Shapiro

assumes lenders correctly anticipate a borrower’s probability of repayment in equilibrium and set loan terms

accordingly, whereas I assume heterogeneity in types across borrowers that is never observable by the lender;

Ghosh and Ray only differentiate between first time loans and repeat loans, and thus don’t have anything

to say about the optimal design of a more realistic progressive lending scheme. Additionally, both papers

focus only on the theory and do not attempt any empirical exercises.

The main contribution of this paper is bridging the gap between theory and empirics by estimating how

borrowers respond to dynamic incentives. I am able to quantify directly for the first time the impact of

variation in progressive lending schemes on borrower behavior, and in doing so show that how borrowers

respond to such incentive schemes varies in interesting ways depending on the stage of their relationship with

the lender. Empirical work on dynamic incentives remains thin, although there are some recent applications

in various development contexts. Most closely related to my setting, Karlan and Zinman (2009) find in an

experiment with repeat borrowers in South Africa that the promise of a subsidized future loan improves

repayment on a borrower’s current loan, which they characterize as evidence of positive moral hazard. Giné

et al. (2010) show that the threat of credit denial reduces both risk-taking and default in a game setting.

Giné et al. (2012) use a fingerprinting intervention to randomize a lender’s ability to implement dynamic

incentives among farmers in Malawi, and find that the threat of exclusion improves repayment only among

the riskiest types. Breza (2013) demonstrates that concerns over microfinance lender viability (and thus over

whether future loans will be accessible from that lender) in India leads to higher default.

By analyzing the effect of plausibly exogenous increases in loan size on repayment, this paper also

contributes to a broader empirical literature on moral hazard in consumer credit. My results add to this

literature by explicitly testing for the effect of a larger loan size across borrowers in different stages in their

relationship with the same lender, thus allowing me to tease out possible heterogeneity in the direction

of moral hazard that was previously unexplored. The vast majority of existing research finds evidence

of positive moral hazard, similar to my findings for first-time borrowers in Section 4. In the same study
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mentioned above, Karlan and Zinman (2009) find that offering a 100 basis point discount on the next loan

in the South African medium-term consumer credit market leads to a 13 to 21 percent decrease in default.

Adams et al. (2009) study the sub-prime car loan market in the United States, and find that a $1,000

increase in loan size increases the probability of default by 16 percent. De Giorgi et al. (2015) focus on

the Mexican credit card market and find that receiving an additional credit card, which translates into an

additional $1,000 in available credit, leads to a 34% increase in default. Consistent with my findings of a

negative moral hazard effect among repeat borrowers in Section 5, Dobbie and Skiba (2013) show that a

$50 increase in loan size lowers the probability that a payday borrower defaults by 17 to 33 percent. While

they do not explicitly differentiate between new and repeat borrowers, most payday borrowers take out a

sequence of loans similar to the borrowers in my sample. One hypothesis that they put forward to explain

their results, but do not explicitly test, is similar to the story I focus on here: specifically, that borrowers

repay larger loans in order to maintain a larger credit line in the future.

3 Setting and Data

3.1 Empirical Setting

I study dynamic incentives as utilized by a digital credit provider in Africa. Digital credit refers to unse-

cured loans where credit decisions are made instantaneously based on mobile data and loans are requested,

delivered, and repaid electronically. This type of credit is relatively new but growing rapidly, enabled by the

rapid spread of mobile phones and improved big data processing tools. In emerging markets, there are over

20 active digital lenders reaching an estimated total of 24 million users, six of which have over one million

users (CGAP, 2017). While digital credit is now available in many regions, it is particularly prevalent in

Sub-Saharan Africa due to the region’s high mobile money penetration.

Conditions are in place for digital credit to continue to expand rapidly over the years to come, making

this study increasingly relevant. A key input for digital credit is the existence of a robust and widely-utilized

mobile money network. As documented by Suri (2017), mobile money has spread like wildfire across the

developing world. By the end of 2015, 271 mobile money services were available in 93 different countries,

with an additional 110 in the works. At this date, there were 411 million registered mobile money accounts

globally, of which 134 million had been utilized within the past 90 days.

Digital credit is characterized by the following features. First, loan applicant eligibility depends on

owning a phone (in some cases, a smart phone), but applicants don’t need a formal bank account, any credit

history, or any formal proof of income. Loan decisions are automated and depend on non-traditional digital

data that are scraped automatically from the phone. Loans tend to be smaller, shorter-term, and costlier

than traditional consumer loans. Finally, all interactions between borrowers and lenders are done remotely.

Borrowers don’t need to live near or travel to a bank to apply, receive a loan, make repayments, or engage

with customer service representatives.
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Reflecting these features, digital credit is typically used for different purposes than formal bank loans

or microcredit. Small, instantly-delivered loans are ideal for filling short-term household liquidity gaps or

meeting working capital needs for businesses, rather than financing large-scale asset purchases or starting

a business. A recent survey in Kenya, which has the highest penetration of digital credit, confirmed this,

finding that mobile loans are the primary source of credit used for both day-to-day needs and for emergencies

(CGAP, 2017b).

Digital lenders rely heavily on dynamic incentives. This reflects a few considerations. First, average

loan sizes are generally too small for it to make financial sense to pursue legal action against defaulters.

Second, because of the remote nature of interactions, lenders don’t have any sort of personal relationship

with borrowers and often aren’t located anywhere near them, making many other punishment techniques

infeasible. Finally, they predominantly operate in settings with only nascent credit reporting bureaus (CRBs)

and little credit information sharing among lenders, so threats to report defaulters in this sense are less

effective. And even in countries where CRBs are more robust, most digital credit borrowers don’t also have

access to formal credit, thus reducing the power of the reporting threat.

3.2 Lender

The data for this study comes from a digital lender active in Africa since 2015. Like other digital lenders,

the lender uses data science and machine learning algorithms to make credit decisions. This lender uses a

smart phone application (“app”) platform as an interface, thus restricting the sample of potential borrowers

to those with access to a smart phone. However, given recent trends, this does not represent a significant

restriction.7 The country’s primary mobile money system provides the rails for all loan disbursements and

repayments.

To apply for a loan, individuals must first download the app, fill in some basic identification and KYC8

information, read and agree to confidentiality and data-sharing disclosures, and select a loan product for

which to apply. At this point, additional data is gathered from the phone automatically, and an internal

risk score is generated for - but not shared with - the applicant. Alternative digital data sources include call

data records (CDRs), mobile money transactions, information from social media accounts, social network

connections, and various types of text notifications. These data provide a richer picture of the individual

than is available to traditional lenders. If the applicant’s risk score is above the relevant threshold and the

applicant passes a number of fraud checks, she is notified of approval and the loan amount is disbursed

immediately into her mobile money account. She can then repay the loan by transferring mobile money

funds back to the lender. She receives text message reminders prior to each repayment date, as well as

several late payment notifications in the case of a missed repayment. She can also check the app to view the

remaining balance and additional loan details at any time.
7According to the Consumer Barometer survey by Google, smart phone penetration in the relevant country was close to 50%

by 2016, relative to 90% total mobile penetration.
8“Know Your Customer” information required by regulation.
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The lender relies primarily on both forms of dynamic incentives to encourage repayment. During the

sample period that I focus on in my empirical analysis, the dynamic incentive scheme took the following

form. All borrowers start out at a small initial loan size. Borrowers who repay a sufficient number of

installments of their current loan on time proceed up the loan ladder to a larger loan. Borrowers who repay

their current loan but with an insufficient on-time payment record either remain on the same rung or move

down (depending on the degree of lateness). Borrowers who default are blocked from the system permanently.

The lender provides no specific information about the loan ladder or its credit policies to borrowers, beyond

general statements that on-time repayment is necessary to qualify for larger loans in the future. Critically

for my empirical strategy, the lender frequently experiments with its progressive lending policies - both the

structure of the loan ladder and how borrowers progress along it - over the sample period.

3.3 Data

My dataset contains detailed information on application, borrowing, and repayment decisions as well as loan

characteristics for all loans made between March 2015 and September 2017. I focus my analysis on the

subset of loans issued through July 2016, which equates to 85 thousand borrowers and 340 thousand loans.9

All summary statistics discussed refer only to this subsample of borrowers and loans. For each borrower, I

observe various demographic, financial, locational, and network characteristics obtained when they download

and register for the mobile app. After they apply for a loan, I additionally observe the risk score assigned

by the lender’s data-based algorithms, as well as the risk score inputs. For successful applicants, I see the

sequence and timing of loans taken out and all subsequent repayment decisions. On the lender’s side, I have

full information on loan parameters, the structure of the loan ladder, and and all relevant credit policies.

Key loan parameters include loan size, repayment frequency, loan term, and the interest rate.

3.4 Descriptive Statistics

3.4.1 Loan Parameters

The mobile loans offered by the lender are small, short term, and relatively expensive. Table 1 displays

summary statistics on key contract terms, split by initial versus repeat loans. The median loan to a first-

time borrower is $10, has an 8% flat fee attached, and is meant to be repaid in three weekly installments.

The median loan to a repeat borrower is $20, comes with an 11% fee attached, and is repaid in four weekly

installments. Overall, loan sizes range from $2.50 to $400.10 Most loans have a 28-day maturity. Interest is

charged as a flat fee on top of the loan principal, which ranges between 5% and 17%. There are no other

fees associated with the loans; most notably, there are no late fees and interest is not compounded on loans
9This decision is predicated on three considerations. First, there was a technology upgrade made to the lender’s app in

August 2016 that complicates the comparison of outcomes before and after this change and also makes the earlier period
preferable for my purposes. Second, the lender did not want statistics on its full portfolio shared. Third, this means I have
at least a year of time to observe borrowing patterns for these borrowers, which is sufficient to get data on the longer-term
outcomes I consider in my empirical analyses.

10No borrower in the sample has reached the maximum offered loan size of $500.
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that are repaid after the final due date. The high fees and short maturities translate into high APRs, which

range from 19% to 334%.

3.4.2 Borrowers

The lender does not require borrowers to provide much self-reported information loan application stage,

instead preferring to rely on hard data scraped from the mobile phone. However, the lender has conducted

several third-party surveys in order to learn more about the composition of its customer base. They do col-

lect information on the age and gender of all individuals who download the app; the prototypical borrower

is relatively young, at around 30 years of age, and male, with men comprising over two-thirds of the borrow-

ing pool. Table 2 displays additional information gathered from surveys on borrower location, education,

income, income security, occupation, business ownership, other credit sources, and reported loan use. 45%

of borrowers live in urban settings. Most borrowers are very well-educated: over 50% have graduated from

university, 95% have graduated from secondary school or higher, and nearly all have at least graduated from

primary school. About a third of surveyed borrowers are still in school, either full- or part-time. Average

self-reported monthly income is around $420, implying annual income of $5,400, which is much higher than

average income per capita in the relevant country. Only about 24% report having sufficient savings such

that they would be able to last at least six months if they were to lose their main source of income. Half

of surveyed borrowers report having a salaried job, with slightly more reporting that they own a business.11

Many borrowers report owning more than one business.

Nearly all surveyed borrowers report having access to other credit sources; three-quarters utilize other

forms of digital credit, while only 23% report having access to formal bank loans. Most borrowers (over

70%) report using their loan for consumption smoothing purposes, such as for emergencies and unexpected

expenses. Slightly less than half report using their loan for business purposes. Of those who do use the

loan to invest in a business, only about one-quarter state that it was to start a new business, while the rest

indicate using it for an existing business.

3.4.3 Borrowing Patterns

Most borrowers take out a sequence of loans in relatively quick succession. Tables 3 and 4 display various

statistics about how borrowers utilize this lender at the borrower and loan level, respectively. Three-quarters

of borrowers have taken out more than one loan. The median borrower has taken out five loans total over

the course of 5.5 months. The median number of loans per month is 1.1. The distribution of the number

of loans per borrower has a long right tail, with 23% of borrowers having taken out ten or more loans and

three borrowers having taken out more than 50 loans. Borrowers usually repay loans early: 82% of loans

that are repaid are done so before the final scheduled repayment date, and the median loan is repaid two

full weeks early. Borrowers also tend to take out another loan very quickly after repaying their last loan:
11Note that these are not mutually exclusive - many salaried workers report also running a business on the side.
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the median time between loans is zero; in other words, the median borrower took out another loan the same

day as repaying her previous loan.

Most borrowers continue taking out loans until defaulting. About 14% of the sample of borrowers has

an outstanding loan with the lender at the end of the sample period. Of borrowers without an outstanding

loan currently, around half have defaulted, with the remaining evenly split between those who chose not to

reapply for another loan and those who reapplied and were rejected.

Figure 1 depicts some key moments related to borrowing behavior delineated by loan cycle (i.e., how

many loans a borrower has taken out thus far). As shown in Panel A, 75% of borrowers have taken out at

least two loans, 50% have taken out at least five loans, and 23% have taken out ten or more loans. Panel

B depicts that, conditional on continuing to borrow, it takes the average borrower four weeks to reach their

second loan, 15 weeks to reach their fifth loan, and 35 weeks to reach their tenth loan. Panel C shows that

average loan sizes climb from under $10 on the first loan to $25 on the fifth and $45 by the tenth.

3.4.4 Default Patterns

Default rates are relatively low at the loan level, but many borrowers end up defaulting and thus being

excluded from any future loans from this lender. About 9% of loans have ended in default, while 50% of

borrowers during the sample period default eventually. Of loans that end in default, 76% have no partial

repayments made. This suggests that many defaulters decide to walk away with the entire loan principal,

rather than that they default because they struggle to keep up with the repayment schedule.

Average default rates are nonlinear in loan cycle position, as shown in Figure 1, Panel D. Default is much

more likely on the first loan: first-time borrowers during the sample period default about 14% of the time,

while the repeat borrower default rate is only about 6%. The default rate drops significantly on the second

loan relative to the first loan, then rises through the next several loan cycle positions before falling steadily

thereafter.

One key predictor of a borrower’s eventual default outcome during this period is how quickly she takes

out and repays loans. The borrower-level default rate for borrowers who, on average, take out their next

loan within one day of repaying their prior loan is 72%, relative to only 34% for borrowers who take loans

out more slowly. Figure 2 depicts this strong negative relationship between the probability of default and

the speed with which a borrower moves through loans from this lender. I use this fact in attempting to

disentangle mechanisms in my empirical analysis in Section 5 of repeat borrower responsiveness to dynamic

incentives.

4 Empirical Results: Initial Loan Size

I use quasi-experimental variation in the lender’s progressive lending policies - holding constant their policy

of full exclusion of defaulters - to estimate the causal impact of dynamic incentives on borrower behavior. I
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focus on two key parameters of the lender’s loan ladder: the starting loan size for new borrowers, and the

rate of growth in loan size as borrowers progress up the ladder. In both cases, I focus on how exogenous

changes to each parameter impact outcomes.

The initial loan size is an important piece of the progressive lending scheme from the lender’s perspective

for three main reasons. First, the initial loan can be viewed as a customer acquisition tool. A larger first-time

loan will allow it to attract more borrowers in a competitive setting. Second, to the extent that it influences

expectations of future loan sizes, as posited in the model in Section 6, a higher starting base also strengthens

dynamic repayment incentives for both the first loan and future loans. Finally, the initial loan serves as an

additional, cheap screening device, whereby the lender can sort out unobservably bad types before they reach

larger loan sizes. A smaller first-time loan will reduce the cost of this screening strategy. Taken together,

these considerations generate a tradeoff for the lender in deciding on an initial loan size. Ultimately, how

borrowers adjust repayment behavior in response to the initial loan size determines how the lender manages

this tradeoff. In the analysis presented below, I find that a larger initial loan leads to higher default rates on

the current loan, but to no change in overall (borrower-level) default rates. Therefore, consistent with the

results in Section 5, progressive lending policies appear to influence the timing of default, but don’t reduce

the overall probability of default.

4.1 Empirical Strategy

In order to estimate the impact of the initial loan size on default, I use a regression discontinuity (RD)

approach that exploits discontinuities in the relationship between risk score and loan size. In late 2015 and

early 2016, first-time borrowers were sorted into initial loan sizes by their internal risk score. This process

worked as follows. All potential new borrowers first applied for an initial loan of $10. Applicants with

risk scores above a fixed threshold were approved, while applicants with risk scores below the threshold

were rejected but could reapply for a smaller loan. This sorting of new borrowers into different initial loan

products thus created discontinuous jumps in loan size across individuals with very similar risk scores around

the $10 threshold.

I use this new borrower sorting policy to estimate the impact of a larger initial loan size using a fuzzy RD

approach with the risk score as the running variable.12 The intuition behind my identification strategy is the

following. A borrower’s risk score is continuously (negatively) related to her probability of default. Being

above the risk score threshold for the $10 loan increases the probability of receiving the larger loan relative

to the smaller loan. Any jump in the default rate at this threshold is thus plausibly due to the change in

loan size.

Formally, consider the following model of the causal relationship between default on the first loan D1

and initial loan size L1 for individual i:
12I only need to use fuzzy RD because there are a small number of cases in which the sorting algorithm malfunctioned, such

that some borrowers do not receive the correct loan size. Specifically, 0.4% of borrowers mistakenly received a $10 loan despite
not having a sufficient credit score, and 0.5% of borrowers who should have received a $10 loan instead got a $5 loan.
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D1,i = α+ β · L1,i + εi (1)

I focus on default on the initial loan, but also present results on longer term credit outcomes. The

parameter of interest is β, which measures the causal impact of loan size on default. However, loan size is

determined by the risk score, which is highly correlated by design with the probability of default: larger

loans were given to borrowers who were predicted to be lower risk. Therefore, direct estimation of β by

OLS will be biased. Borrowers who received the larger loan should be less likely to default than those who

received a smaller loan in the event that they had both received a loan of the same size: E[εi|L1,i] < 0.

The key identifying assumption behind the fuzzy RD approach is that the risk score is continuously related

to default probabilities, and in particular does not jump discontinuously at the threshold for determining

eligibility for the larger loan. This requires that all other unobserved determinants of default are continuously

related to the risk score, or more formally, that the distribution of unobserved determinants of default

conditional on risk score, E[εi|scorei], trends smoothly through the loan size-eligibility threshold used by

the lender:

E[εi|scorei − cutoffi = 4]4→0+ = E[εi|scorei − cutoffi = 4]4→0− (2)

where scorei is individual i’s risk score and cutoffi is the loan-eligibility threshold for the larger loan

at the time of individual i’s initial application. For ease of presentation, I consider the score relative to the

cutoff. Because loan size is a discontinuous function of the risk score at the threshold whereas the conditional

distribution of all unobservable determinants of default, εi, is continuous at the threshold, I can now identify

β. Any change in the default rate right at the threshold can be attributed to the receipt of a larger loan.

I use two complementary strategies to estimate β, the causal impact of initial loan size on default. First,

I use an instrumental variables (IV) approach with global risk score controls. I instrument for loan size using

a binary indicator of having a risk score greater than the cutoff. This implies the following semi-parametric

first-stage and reduced-form equations:

L1,i = f(scorei − cutoffi) + δ · 1(scorei > cutoffi) + ui (3)

D1,i = g(scorei − cutoffi) + λ · 1(scorei > cutoffi) + ηi (4)

Here, δ and λ represent the impact on loan size and default, respectively, of having a risk score that clears

the $10 loan eligibility threshold. I present results using both a third-order polynomial functional form for

f(·) and g(·), as well as a linear specification. I include interaction terms between each power of the score

(relative to the cutoff) and the indicator of being above the threshold, thus allowing the slope to vary on

either side of the threshold. I also include weekly loan cohort fixed effects to control for any time trends.
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Second, as suggested by Gelman and Imbens (2014) and Calonico et al. (2014), among others, I use a non-

parametric local polynomial approach. This involves zooming in on data in a neighborhood around the cutoff,

which reduces the dependency of the estimate on the correct functional form assumption. In practice, this

procedure computes weighted averages of D1,i and L1,i on either side of the risk score threshold, where points

closer to the threshold receive larger weights, and points farther from the threshold receive lower weights.

Two key decisions in implementing this approach are the order of the polynomial and the bandwidth to use.

Following Imbens and Kalyanaraman (2012), I use a local linear specification and the mean squared error

(MSE) optimal bandwidth, where I allow the bandwidth to be different on either side of the cutoff. For

implementation, I use the tools developed by Calonico et al. (2014) and expanded by Calonico et al. (2017).

There are a few main threats to the causal interpretation of my results. The first concerns the possibility

of selection. Adverse (or advantageous) selection, whereby worse (better) borrowers systematically choose

larger loans, is not technically possible in my setting. Everyone chose to apply for the same initial loan of

$10, and thus was willing to borrow (“selected in”) at the same initial terms. Additionally, borrowers were

not able to choose any other loan size besides the one they were sorted into according to their risk score.

However, it is possible for applicants to opt out of borrowing upon discovering they are not eligible for the

larger loan. Such selective borrowing would be problematic in my setting, as in any regression discontinuity

analysis, because it could create discontinuous differences in unobservable borrower characteristics at the risk

score threshold that could also be correlated with the probability of default. I address this in Section A.1 in

two ways. First, I compute the percentage of applicants who chose not to reapply despite being eligible for

the smaller loan, and find it to be too small to explain my results. Second, I show that the distribution of

risk scores for those who chose to reapply for the smaller loan versus those who didn’t are very similar.

Another potential issue is the possibility of manipulation of the risk score by borrowers. If individuals

could influence the risk score in such a way as to ensure they were just above the threshold and thus eligible

for the larger loan, this would again create a discontinuity in unobservable borrower characteristics at the

threshold. Borrowers with sufficient knowledge or ability to influence the score would be more likely to end

up just above the threshold, while borrowers with less information or capacity to impact the score would be

more likely to fall below it. As a result, the two groups would not provide proper counterfactuals for one

another, undermining the identification strategy. This type of manipulation is highly unlikely in my setting,

as the risk score is made up of many components selected via a machine-learning algorithm, and neither the

components nor the risk score itself are disclosed to the applicants. Nevertheless, I provide both graphical

and test-based evidence in Section A.1 to assuage any concerns.

A final potential problem is that my regression discontinuity design is misspecified. To ensure that my

results identify real discontinuities caused by the change in loan size receipt, I replicate my empirical analysis

using data from two alternative periods. First, I analyze a later period during which the lender eliminated

the initial loan size sorting policy. During this period, nearly all borrowers took out $10 loans, so there is no

longer a discontinuity in loan size at the risk score threshold. Reassuringly, I also find that the discontinuity
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in default disappears. Second, I replicate my analysis using data from another later period during which

the lender reintroduced the initial loan size sorting policy, and obtain very similar estimates to my baseline

analysis.

4.2 Impact of Loan Eligibility on Initial Loan Size

The first-stage analysis provides evidence that the lender closely followed its policy of sorting borrowers into

initial loan sizes according to their risk score. Each plot in Figure 3 shows average loan sizes across risk

score bins with a width of .01 units.13 Panel A uses a third-order polynomial to control for the risk score,

allowing the shape to vary on either side of the threshold:

L1,i = γ0+
3∑
p=1

γ1p·(scorei−cutoffi)p+
3∑
p=1

γ2p·1(scorei > cutoffi)·(scorei−cutoffi)p+δ·1(scorei > cutoffi)+ui

(5)

Panel B instead includes fitted values from a first-stage regression with a linear trend, interacted with an

indicator of being above the cutoff:

L1,i = γ0+γ1 ·(scorei−cutoffi)+γ2 ·1(scorei > cutoffi)·(scorei−cutoffi)+δ ·1(scorei > cutoffi)+ui (6)

In each specification, δ represents the impact on loan size of being above the risk score threshold. Panel

C shows the local linear approximation within the optimal data-determined bandwidths above and below

the cutoff. Figure 4 replaces average loan size with the probability of receiving the larger loan.

These charts provide strong visual evidence for the discontinuity in loan size at the risk score threshold.

The average loan size jumps from approximately $5 to $10 at the threshold, and the probability of getting

the larger loan shifts from close to 0% to nearly 100%. This is unsurprising given the lender’s sorting policy

and the automated nature of most lending decisions by this lender.

Table 5 presents the formal first-stage results. Columns 1-3 use loan size as the dependent variable, while

Columns 4-6 use a dummy for obtaining the larger loan. Columns 1 and 4 include a third-order polynomial

as controls for the risk score fully interacted with an eligibility indicator, corresponding to Panel A in Figures

3 and 4. Columns 2 and 5 replace the polynomial with linear controls, corresponding to Panel B in Figures

3 and 4. Columns 3 and 6 use local linear estimation, corresponding to Panel C in Figures 3 and 4.

Consistent with the visual evidence, eligibility for the larger loan is highly predictive of receipt of that

loan. Results are very similar across both specifications. Borrowers with risk scores above the threshold

receive loans that are around $4.67 - $4.73 larger, or put another way, have a 93%-95% higher probability of

obtaining a $10 loan relative to a $5 loan. These results imply that the RD design is quite close to qualifying
13The full distribution of new borrower risk scores during this period had a range of .53, so each bin represents about 2% of

this range.
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as “sharp”, and that the degree of scaling in my IV estimation of the effect of initial loan size on default will

be minimal.

4.3 Impact of Initial Loan Size on Default

Given the strong evidence for a jump in loan size precisely at the risk score threshold, I next exploit this

discontinuity to estimate the causal impact of receiving a larger initial loan on the probability of default on

that loan. Figure 5 depicts the reduced-form relationship between the default rate and the risk score relative

to the $10 eligibility threshold. Each plot shows the average default rate across risk score bins. Consistent

with the approach followed in the first-stage analysis, Panels A and B contain fitted values from the reduced-

form regression including global polynomial and linear controls fully interacted with an indicator of being

above the cutoff, while Panel C shows the local linear approximation within the optimal data-determined

bandwidths above and below the cutoff.

There is clear visual evidence of a jump upward in default rates precisely at the risk score threshold.

This implies that increasing the initial loan size to otherwise similar borrowers leads to a higher probability

of default on the initial loan. The figure also illustrates, as expected, a negative relationship between the

risk score and default rates. This relationship is steeper and tighter for borrowers above the threshold. This

reflects the lower density of borrowers below the threshold, which reduces the precision of the estimation

results, as well as related fact that the risk score model tends to be less predictive for lower quality borrowers

because fewer of them are let into the system in the first place. A formal test, as reported in Table 6,

confirms that the slope change is indeed significant.

Table 7, Columns 1-3 presents formal two-stage least squares estimates of the impact of doubling the

initial loan size on the probability of default by new borrowers. I instrument for initial loan size using the

maximum eligible loan, which is $10 and $5 for borrowers above and below the threshold, respectively. I

also include loan cohort week fixed effects. Column 1 corresponds to the global polynomial risk control

specification, Column 2 utilizes global linear controls, and Column 3 features local linear estimation. I find

that doubling the initial loan size leads to a large, statistically significant, and economically meaningful

increase in default among new borrowers. With polynomial controls, borrowers who get the larger loan

are 7.7ppts more likely to default, relative to an average new borrower default rate during this period of

17.7%. This thus represents an economically meaningful 44% increase in the probability that a new borrower

defaults on her first loan. The global linear specification yields a slightly higher estimate of a 8.2ppt positive

impact, corresponding to a 46% increase in the default rate, while the local linear estimate is slightly lower

at 6.1ppts (a 34% increase in default).

These results can be interpreted as an exogenous increase in initial loan size, net of any selection effects,

leading to a higher likelihood of default by new borrowers on their first loan. In other words, starting

borrowers out at a higher loan size reduces the probability of repayment, implying the lender both loses

the principal on these loans and loses the defaulting borrowers as customers. This is consistent with some
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combination of positive moral hazard and repayment burden effects, although I don’t have sufficient variation

to identify each separately. Moral hazard captures the idea that individuals who receive larger loans have

weaker repayment incentives, consistent with a number of underlying mechanisms. The repayment burden

effect refers to the fact that larger loans mechanically require more to be paid back, thus making repayment

more difficult. It is worth pointing out that much of the literature on the impact of loan size (or interest

rates) on default rates does not distinguish between these two effects, and instead refers to any positive

impact on default rates from an exogenous increase in loan size or interest rates as moral hazard.14

4.4 Impact of Initial Loan Size on Longer-Term Credit Outcomes

I also consider how varying the initial loan size impacts longer-term credit outcomes at the borrower level,

beyond the probability of default on the initial loan. The identification strategy, and thus the first-stage

portion of the analysis, remains the same.

Figure 6, Panel A shows the graphical results for the reduced-form impact of a larger initial loan on

borrower-level default rates. There are no clear discontinuities in the overall probability that a borrower

defaults. In other words, receiving a larger initial loan does not make a borrower more likely to default

eventually, even though that borrower is more likely to have defaulted on her first loan. Putting these two

pieces together, this implies that giving a larger initial loan shifts the timing of default forward. Table 7,

Columns 4-6 confirm these results.

Figure 6 also gives visual evidence for the reduced-form effect of a larger initial loan on the total number

of loans and the last loan size (or equivalently, how far up the loan ladder the borrower progressed). Table 8

presents the corresponding formal estimates. Receiving a larger initial loan results in a borrower taking out

0.9-1.4 fewer loans. However, because these borrowers also started at a higher ladder rung, it does not lead

to a significant change in how far up the ladder a borrower makes it.15

5 Empirical Results: Loan Ladder Progression

I next analyze the impact of an exogenous change in the loan ladder progression policies of the lender.

This is the core piece of the lender’s progressive lending structure. Faster progression has the upside of

creating stronger incentives for repayment, but also comes at the risk of increasing the ultimate probability

of borrower default and the cost to the lender in the event of default once borrowers reach much larger loan

sizes. My empirical design allows me to analyze this tradeoff in my particular setting. In doing so, I am

able to provide novel evidence on the impact of dynamic contracting, and in particular how the stage of the

dynamic relationship between borrowers and lenders influences repayment outcomes.
14Examples include Adams et al. (2009) and Dobbie and Skiba (2013).
15For all of these results, the predictive content is stronger for individuals with risk scores above the threshold: the relationship

between the risk score and the variable of interest is tighter, more steeply sloped above the threshold in most cases. As discussed
previously, this likely reflects the lower density of borrowers below the threshold and the fact that the risk score model used by
the lender does less well for lower quality borrowers because it has less data on these types off which to train.
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5.1 Empirical Strategy

I estimate the impact of loan ladder progression on borrower behavior by exploiting a series of experiments

in how repeat borrowers proceeded up the loan ladder conducted by the lender. These experiments were

unannounced to borrowers and thus provide a source of exogenous variation in the rate at which borrowers

move up the loan ladder. Specifically, the lender introduced a policy whereby repeat borrowers were only

upgraded to a larger loan if their on-time payment (OTP) percentage on their previous loan was above

a certain threshold, and then experimented with the level at which this threshold was set. The OTP

percentage refers to the fraction of loan payments that were completed before the scheduled repayment due

dates. Borrowers below this threshold either remained on the same loan ladder level, or were downgraded

if their OTP percentage was sufficiently low. Prior to the introduction of the OTP upgrade threshold,

all borrowers who repaid their previous loan were upgraded to a larger loan. The lender introduced the

threshold in mid-2015 and set it at a particular level, which I will denote as P%. They then experimented

with the level of the threshold over the next few months: lowering it by 25ppts to (P − 25)% in November

2015, increasing it back to P% in December 2015, lowering it back to (P − 25)% in March 2016, and then

increasing it back to P% a month later. Figure 7 summarizes these changes. This variation in the OTP

threshold generates “upgrading shocks”: periods when borrowers who normally would have had to take out

a next loan of the same size instead got upgraded to a larger next loan. The objective of this analysis is to

determine how this variation in loan ladder progression impacts repayment outcomes.

I estimate the impact of getting upgraded to a larger loan on default using a differences-in-differences (DD)

approach, comparing default outcomes for borrowers whose upgrade status changed depending on whether

they reapplied before or after the policy change to those who always got upgraded.16 The treatment group

is the set of borrowers whose upgrade status depended on the timing of their application for their next loan.

It is composed of the set of borrowers whose OTP percentage on their previous loan was in the range of

(P − 25)% to P%. These borrowers were only upgraded to a larger subsequent loan during the periods

in which the upgrade threshold was temporarily lowered to (P − 25)%. The control group is formed by

borrowers who were always upgraded to a larger loan because their OTP percentage on their previous loan

was between P% and 100%. I restrict my sample to second-time borrowers to limit the impact of possible

selection issues caused by borrowers who default (and thus are ineligible for future loans from this lender)

dropping out of the sample. I further restrict my sample to those second-time borrowers whose first loan

was $10, to prevent any compositional issues induced by the results presented in Section 4.

I use the timing of the policy changes to delineate the temporal dimension of the DD analysis. Due to

very low volume of less than 50 loans a week, I exclude the period prior to November 2015 from my main

analysis, although I do incorporate the earlier period as a robustness check in Section A.2. The “off” period

consists of when the upgrading shock was not in effect, defined as when the OTP threshold was set at P%.
16While an RD strategy is in theory possible in this setting as well, with the OTP percentage as the running variable, there is

not sufficient variation in OTP percentages for this strategy to be implementable. This reflects the fact that most loans in the
sample have either three or four weekly payments due, thus constraining the possible values of the OTP percentage significantly.
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While in theory this is true both from December 2015 through Feb 2016 and from April 2016 onward, in

practice a few other upgrading restrictions were added in April 2016 that make this period not a suitable

comparison. Naturally, the “on” period is when the upgrading shock was in effect, which consists of two time

segments: when the OTP upgrade threshold was temporarily lowered to (P − 25)% in November 2015 and

March 2016.17

Figure 8 depicts the identification strategy. The control group is always upgraded to a larger second loan

relative to their first loan. Given that their first loan was $10 and the second loan on the loan ladder during

this period was $20 in size, members of the control group face an effective loan ladder slope18 of two. During

the “off” period, from mid-December 2015 through early March 2016, the treatment group is not upgraded

to a larger second loan. Instead, they receive a $10 loan again, so the loan ladder slope they observe is one.

Conversely, during the two “on” periods, the treatment group is also upgraded, so their loan ladder slope

increases to two. Therefore, the treatment group gets a loan that is twice as large if they reapply during the

“on” period instead of the “off” period, or put another way, face an upward-sloping loan ladder instead of a

flat one.

Formally, I estimate DD regression equations that take the following form:

Di = α+ δ · ont + γ · treatedi + β · (on · treated)it + η ·Xit + εit (7)

where i denotes the borrower, t denotes the week the loan is disbursed, and Xit is a vector of covariates.

The coefficient of interest is β, which represents the impact of the upgrading shock on default. δ captures

the effect on default of being in the “on” period when the upgrading shock was in effect for the borrowers

who would have been upgraded regardless, and γ gives the effect of being in the treatment group when the

upgrading shock was not in effect.

The key identifying assumption behind my DD approach is that, in the absence of the change in the

loan ladder progression policy, default rates would depend on group and period but not on their interaction.

Put another way, the average change in default rates between the “off” and “on” periods for borrowers who

were always upgraded represents a valid counterfactual change for the treatment group if the change in loan

ladder progression was never instituted. While this assumption is inherently untestable, I provide some

corroborating evidence that it holds in Section 5.2. I show that default rates trend similarly for both groups

during the period when both are upgraded (termed the “on” period), although there is a level difference

induced by the fact that the control group is composed of observably better borrowers (given that they

repaid more of the installments on their previous loan on time than did the treatment group). In Section

A.2, I also run the DD for an extended sample period with an additional “off” segment, and find similar

results.
17Note that “off” and “on” are analgous to “pre” and “post” in traditional DD parlance. I define them in this way so that

the analysis yields an estimate the impact of larger repeat loan on default rates and thus can be compared to the results from
Section 4 on the impact on repayment of a larger initial loan.

18I define the loan ladder slope in proportional terms; it is equal to the ratio of the current loan size to the previous loan size.
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Another potential issue for the causal interpretation of my results is selection. As was the case in the first

set of empirical results on initial loan size, there is no possibility of differential loan size selection by risk type

in this setting. Everyone borrowed (“selected in” at) the same initial loan, and borrowers could not select a

different second loan size besides the one into which they were sorted according to their OTP percentage on

their first loan. In practice, after repaying their first loan, borrowers could only view and apply for the one

loan product that they qualified for next, as determined by the OTP threshold rules. This means the OTP

threshold changes can be viewed as exogenous variation in whether a subset of borrowers were upgraded to

a larger loan (relative to their first loan) or not. However, selective borrowing is possible and potentially

problematic: borrowers may have chosen not to take out another loan if they were not upgraded. This could

create differences between treatment and control groups that vary over time but reflect a selection effect

rather than the causal effect of the upgrading shock. I show that there is little evidence that this occurs in

my setting in Section A.2.

5.2 Impact of Loan Ladder Progression on Default

Figure 9 depicts the estimated difference in default rates between the treatment and control group by loan

cohort week, along with the corresponding 95 percent confidence intervals. It provides a few different pieces of

information. First, it provides graphical support for the parallel trends assumption. Default rates are slightly

higher for the treatment group relative to control during the “on” period when both groups are upgraded,

but this difference is not statistically significant and is relatively constant across time. Next, it suggests a

strong effect of loan ladder progression on default rates. Treatment default rates rise substantially relative

to control when the treatment group is not upgraded to a larger second loan. While there is heterogeneity

by cohort week, the positive difference in default rates between treatment and control is both statistically

significant and economically meaningful in nine weeks out of 12.

Table 9, Column 1 provides the formal DD regression estimates of Equation 7. It contains the standard

DD specification, incorporating controls for borrower risk score, the speed at which the second loan is taken

out, and borrower cohort fixed effects. The estimation results show that an exogenous doubling in loan size

(relative to the previous loan) to a second-time borrower, or an “upgrading shock”, leads to a statistically

significant decline in default by 2.9ppts. This is relative to an average default rate of 5.0 percent for this

sample during this period. Therefore, it implies that a doubling in the second loan size relative to no loan

size improvement causes the default rate to fall by 58%.

This is a striking result. It can be interpreted as an exogenous increase in the rate of loan ladder

progression, net of any selection effects, leading to a much lower likelihood of default on that loan by repeat

borrowers. In other words, giving repeat borrowers more money on their second loan relative to their first

loan actually makes them less likely to default. Under the assumption that any repayment burden effect is

always positive (a larger loan is harder to repay because the borrower has to come up with a bigger sum

of money), this implies a negative moral hazard effect. Very few others have found evidence of negative
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moral hazard in credit markets, with one prominent exception being Dobbie and Skiba (2013) in the payday

lending market in the United States, as discussed in Section 2.

It also contrasts sharply with the results for first time borrowers in the same setting, presented in Section

4. New borrowers who receive an exogenously larger loan are more likely to default, whereas repeat borrowers

who receive an exogenously larger loan (relative to their first loan) are less likely to default. This suggests

that there are important differences between borrowers and how they make default decisions depending on

which stage of the dynamic relationship with the lender they are currently in. I investigate some possible

mechanisms to explain these contrasting results in Section 5.4 and in the model presented in Section 6.

5.3 Impact of Loan Ladder Progression on Longer-Term Credit Outcomes

Given that faster loan ladder progression leads to lower default on the current loan, a natural next question

is how it impacts borrower-level default rates. Does the loan ladder structure impact overall default proba-

bilities, or just shift the timing of default? Figure 10, Panel A displays the difference in the rates of eventual

default between borrowers in the treatment and control groups. Borrower-level default rates are relatively

constant and not statistically different in the “on” period, when both treatment and control borrowers were

upgraded on their second loan. However, the rate at which borrowers from the treatment group default

eventually actually drops substantially during the “off” period, during which they were forced to stay on the

same loan ladder level on their second loan.

Table 9, Column 2 presents formal estimates of this effect. An exogenous doubling in loan size on the

second loan increases the probability of eventual default 8.6ppts, relative to an average borrower-level default

rate among this sample of 50.9%. This result is robust to including various controls, including the internally-

calculated risk score, the number of loans taken out before default, the total amount of time between loans,

and loan cohort fixed effects. Therefore, this implies that the steeper loan ladder early on increases eventual

default by 16.9%, which is substantial. Taken together with the results on default on the second loan, this

suggests that faster loan ladder progression encourages borrowers to postpone defaulting until they move

further up the ladder and increases the overall probability of default.

Figure 10, Panels B and C depict the impact of faster loan ladder progression on two other borrower-level

outcomes, the total number of loans taken out and the final loan ladder rung reached. Treatment borrowers,

on average, take out fewer loans and make it significantly less far up the loan ladder. Both results are

consistent with the fact that the treatment group are observably somewhat worse borrowers, given their

worse OTP record on their first loan and their slightly lower average risk score. Treatment borrowers don’t

take out more loans overall when they face a steeper loan ladder during the “on” periods, but do end up

making it farther up the ladder relative to during the “off” period; in other words, while their last loan is

still significantly smaller than that of control borrowers on average, the gap is much smaller when they were

upgraded on their second loan. Table 9, Columns 3-4 provides formal DD estimates to corroborate the visual

evidence.
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5.4 Mechanisms

The results above suggest that some borrowers respond strategically to progressive lending. As is fleshed out

in Section 6, this is consistent with a model with two key elements: first, underlying heterogeneity across

borrowers in the value placed on larger future loans, and second, borrowers are forward-looking and form

expectations about future loan growth based off of their recent experience the lender. Some borrowers place

greater value in reaching a larger loan size and base repayment decisions off of this preference; or in other

words, they act “strategically” to try to move up the loan ladder to larger loan size. If these borrowers

observe loan growth on the second loan relative to the first, they are more likely to repay this loan because

they believe they will again move up the ladder on their next loan. If they observe no loan growth on the

second loan, then they are more likely to default strategically now. It is important to note that this is not

necessarily nefarious behavior; borrowers may be trying to game the system and reach the largest loan size

they can before defaulting, or they might just need a much larger loan for their business or consumption

needs and don’t view the smaller loans as very useful.

To test this hypothesis, I split the sample by a variable that is plausibly correlated with strategic bor-

rowing behavior: the speed at which a borrower takes out loans. Specifically, because the analysis above

focuses on borrowers’ second loans, I sort borrowers based on the number of days between their first and

second loans. This measure is highly correlated with default, as shown in Figure 11. I then split the sample

into two groups based on whether they are above (“fast turnover”) or below (“slow turnover”) the median in

this sample of one day, and repeat the DD analysis separately for each group. About 72% of the control

group and 55% of the treatment group take out their second loan within one day of repaying their last. The

results presented here are robust to using different variables in the same spirit to split the data, such as the

number of days repaid early.

Figure 12, Panels A and B depict the differences in default rates on the second loan for the fast and slow

turnover borrowers, respectively. There is a clear difference in patterns between the two groups, despite some

volatility across loan cohort weeks. Only the fast turnover borrowers in the treatment group see a sharp rise

in their average default rate relative to the control group when faced with a flat loan ladder during the “off”

period. This provides visual support for the notion that the full sample results are largely driven by the set

of borrowers who are taking loans out most quickly, and thus are more likely to repay strategically to try to

get to a higher loan size.

The DD regression estimates in Table 10 confirm this. Columns 1 and 2 estimate the model separately

for the fast and slow turnover groups, respectively, including controls for the risk score and the week in

which a borrower took out her first loan. The DD estimate is large, negative, and statistically significant

for the former group, and small and indistinguishable from zero for the latter. Column 3 includes a full

set of interactions with a binary indicator for having taken out a second loan at least as fast as the median

borrower, again including the additional controls. In this regression, the coefficient of interest is the one on

the triple interaction term, and it is again statistically significant and economically meaningful. These results
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suggest that, among borrowers who take out loans quickly, getting upgraded on the second loan relative to

the first instead of having to take out the same loan size twice causes default rates to fall by 4.8% to 5.4%.

Again, this is relative to an average default rate of 5.0%, implying it causes default to fall by around 100%.

6 Model

6.1 Introduction

I next introduce a simple model that attempts to capture my empirical evidence. To recap, there are three

empirical results that the model should help to explain. First, an exogenously larger initial loan to new

borrowers leads to higher default rates. Second, an exogenously larger loan relative to the previous loan

to repeat borrowers, or equivalently faster loan ladder progression, results in lower default rates on the

current loan, but doesn’t reduce overall borrower-level default rates. And finally, the latter result is driven

by borrowers who appear to be acting strategically, as captured by the speed at which they take out loans.

To explain these results, I write down a dynamic discrete choice model of individual borrowing behavior,

in which borrowers repay their current loan in order to remain eligible for future loans. I then use the model

to derive conditions for when and why different borrowers choose to default. In Sections 7 and 8, respectively,

I also use the structure of the model to estimate the underlying distribution of borrower types and then to

simulate lender profits under various progressive lending schemes.

The logic of the model is as follows. Borrowers vary in the value they place in future access to loans.

They don’t have ex-ante information about loan ladder; instead, they form expectations using their own

loan history. A steeper loan ladder creates stronger incentives for borrowers to repay current loan, because

they expect larger loans in the future. However, if the loan ladder is too steep, it can lead to borrowers

postponing default until much farther up the loan ladder, which can ultimately be more costly for the lender.

6.2 Setup

Consider a setting with one lender and a continuum of borrowers. Each borrower can interact with the

lender a potentially infinite number of times, but both sides can only commit to one-period contracts.

The lender is assumed to be a profit-maximizing entity operating in a competitive environment, with

cost of funds given by r. The lender has a limited ability to screen out first-time applicants. Conditional on

repayment of the first loan, the lender doesn’t reject repeat borrowers. The lender cannot collect collateral

and has no ability to monitor, so it must rely exclusively on dynamic incentives to encourage repayment. It

does this using a two-pronged approach. First, any borrowers who default are permanently excluded from

borrowing in the future from the lender. Second, it uses a progressive lending structure, such that loan sizes

increase as borrowers successfully repay loans and take out subsequent loans. The lender determines loan

ladder progression based on beliefs about the borrower’s probability of repayment. However, I assume that
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loan sizes and loan ladder progression are taken as exogenous by the borrower. This assumption is motivated

by the reality that the process is opaque from borrower’s perspective. The lender also has a maximum loan

size that they are able to offer, L̄.

Each borrower starts out with an initial capital stock K0, which is assumed to be constant across all

borrowers. Loans from this lender are assumed to augment the existing capital stock, rather than providing

the sole funds available for investment in each period. This reflects the small average loan size and the fact

that most borrowers report using the loans for consumption-smoothing purposes or to purchase working

capital for an existing business, rather than to start new businesses. Borrowers have access to a production

function F (·), which is increasing and concave and satisfies the usual Inada conditions (F (0) = 0, F (∞) =∞,

F ′(0) = ∞, F ′(∞) = 0). Borrowers don’t have access to any savings devices, but they do potentially have

access to loans from other lenders.

Borrowers differ in three dimensions. First, borrowers differ in the extent to which they value access to

future loans from the lender. This is captured by heterogeneity across borrowers in a net outside option

parameter, ωi, which they receive if positive or pay if negative in the event of default. ωi can alternatively

be interpreted as the inverse of the default cost. Borrowers with a higher net outside option (or equivalently,

a lower default cost) value future loans from this lender less. I assume that ωi is exogenous and known to

the borrower, but not observable to the lender. Second, borrowers vary in credit needs. Each borrower has a

maximum number of loans T̄i that they need (or equivalently, that they can afford to repay). Once a borrower

reaches her maximum loan cycle, she ends her relationship with the lender. I assume that borrowers do not

know their maximum loan cycle in advance, but instead receive a signal each period indicating whether or

not they have reached it. Finally, borrowers are heterogeneous in how quickly they expect loan sizes to

increase upon taking out their first loan. This is represented as variation in λ̃e2,i, the expected proportional

increase in the second loan relative to a borrower’s first loan. For notational conciseness, I drop individual

subscripts on all variables except for these sources of heterogeneity.

Time is discrete. Each period t corresponds to a loan cycle. For instance, a borrower in period t = 2

is on their second loan with the lender. In period t, assuming no previous defaults, a borrower starts with

her initial capital K0 and funds from previous loans
∑t−1
s=1 Ls . I denote capital at the beginning of period t

(prior to loan receipt) as:

Kt−1 =

K0 if t = 1

K0 +
∑t−1
s=1 Ls if t > 1

(8)

The borrower receives loan (Lt, Rt) from the lender, where Lt is the loan size and Rt is the gross interest

rate. She invests her current loan and gets certain net return F (Kt−1 +Lt)−F (Kt−1), and owes the lender

RtLt. She then receives a signal St indicating whether she has reached her maximum loan cycle, where

St = 0 if t < T̄i and St = 1 if t = T̄i. I assume this signal occurs with the same probability p to each

borrower in every period, but borrowers do not know the value of p and cannot infer it. She then decides

24



whether to repay her current loan or default. This decision is based off of a comparison of the net benefit of

repayment versus the net benefit of default. If she repays, she gets access to another, possibly larger, loan in

the next period. Note that if she has reached her loan cycle cap, this consideration is no longer relevant. If

she defaults, she walks away with the full loan amount Lt and gets her net outside option ωi if positive, or

pays it if negative. Borrowers thus trade off having more money today if they default on their current loan

versus the value of obtaining an additional loan next period if they repay. If she repays and is not at the

loan cap, she proceeds to period t+ 1 and takes out another loan.19 If she defaults, she is no longer eligible

for credit from this lender and the relationship ends.

The borrower’s value function in period t thus takes the following form:

V ti (Kt, Lt, Rt) = max{(F (Kt−1 + Lt)− F (Kt−1)−RtLt + δE[V t+1
i (Kt+1, Lt+1,Rt+1)|Kt, Lt, Rt],

F (Kt−1 + Lt)− F (Kt−1) + ωi} (9)

where E[V t+1
i (Kt+1, Lt+1,Rt+1)|Kt, Lt, Rt] = 0 if the borrower receives a signal in period t that t = T̄i,

which occurs in each period with probability p. However, the signal comes as a surprise and the borrower

does not have any information about p, so it does not enter directly into the value function in period t.

Borrowers have no knowledge about the structure of the lender’s loan ladder. I assume that borrowers

form expectations about future loan sizes based on their own loan history. Specifically, repeat borrowers

(t > 1) expect their next loan to increase by the same proportion as their current loan:

E[Lt+1] = Let+1 = λet+1Lt (10)

where λet+1, the expected proportional change in a borrower’s next loan relative to her current loan, is:

λet+1 =
Lt
Lt−1

(11)

New borrowers (t = 1) don’t have any loan history to extrapolate forward. I assume that there is

heterogeneity across borrowers in loan growth expectations, captured by λ̃e2,i:

E[L2] = Le2 = λ̃e2,iL1 (12)

Given my focus on loan size rather than price, I assume that borrowers expect the interest rate to remain

constant over all loans20:
19The reapplication rate (after the repayment of the prior loan) averages close to 90%, so I ignore the third option of repaying

and deciding to end the relationship with lender.
20This is consistent with the data, in the sense that the variation in loan sizes is much more significant than the variation in

interest rates.
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E[Rt+1] = Ret+1 = Rt (13)

Given the lender’s loan ladder policy {λt} and initial loan terms {L1, R1}, which determine the subsequent

loan terms {Lt, Rt}, we can use this to define a function T (ωi) which represents the optimal number of loans

the consumer takes out before defaulting, conditional on not hitting their maximum number of loans:

T (ωi) = arg max
T

{
T−1∑
t=1

δt(F (Kt−1 + Lt)− F (Kt−1)−RtLt) + δT (F (KT−1 + LT )− F (KT−1)) + δTωi

}
(14)

s.t.

Kt−1 =

K0 if t = 1

K0 +
∑t−1
s=1 Ls if t > 1

Lt = λtLt−1

Rt = Rt−1

λt =
Lt−1

Lt−2

t ≤ T̄

L ≤ L̄

K0, L1, R1 given

where 0 < T (ωi) < ∞. Because the borrower has no information about her maximum loan cycle, they

cannot take it into account when determining their optimal default time. Also, note that loan sizes cannot

grow above the lender’s maximum offered loan size L̄.

In each period, the borrower receives a signal about her maximum loan cycle before making her default

decision. I consider each case separately.

Case 1: St = 0 (t < T̄i)

Let ωt be the net outside option for a borrower who is just indifferent between defaulting in period t and

period t+ 1, conditional on not receiving the loan cap shock in the current period:

F (Kt−1 + Lt)− F (Kt−1)−RtLt + δ
(
F (Kt + Let+1)− F (Kt) + ωt

)
= F (Kt−1 + Lt)− F (Kt−1) + ωt (15)

Equation 15 is similar in spirit to the Euler equation. Recall that the Euler equation says that the

individual is indifferent between reallocating an infinitesimal amount of consumption between periods t and

t+1. Here, the choice variable is the binary default decision, and indifference is between defaulting in periods
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t and t+ 1.

Solving for ωt yields the following equation:

ωt =
δ

1− δ
(
F (Kt + λet+1Lt)− F (Kt)

)
− 1

1− δ
·RtLt (16)

We can alternatively write this condition in terms of the marginal product of capital (MPKi) by taking

a first order approximation of the production function. I allow the marginal product of capital to vary across

individuals, but not over loan cycles.21 The net outside option of the indifferent borrower is now given by:

ωt =
1

1− δ
Lt
(
δ ·MPKi · λet+1 −Rt

)
(17)

ωt can be interpreted as the net value of repaying loan t. Borrowers with ωi > ωt prefer default at t to

default at t + 1, because the net outside option they receive if they default is greater than the net value of

repaying the loan. Borrowers with ωi < ωt prefer to postpone default to t+ 1 because they gain more from

repaying this loan and taking out another than from defaulting today. For a given distribution of ωi across

borrowers, anything that causes ωt to increase will lead to lower default on loan t, as fewer borrowers will

have a sufficiently high net outside option to make default worthwhile. Likewise, if ωt falls, more borrowers

will have a net outside option that exceeds the net value of repayment, and thus default will increase.

Equation 17 is similar to the Bulow and Rogoff (1989) condition that the rate of loan growth must

exceed the interest rate in order for dynamic incentives to have any teeth. It generates a lower bound on

the desirable rate of growth: if expected loan growth is very slow (λet+1 is low), ωt will fall, inducing more

borrowers to default. In the extreme, if ωt is sufficiently low, then all borrowers default.

It can be shown that ωt is unambiguously increasing in the discount factor δ and the marginal product

of capital MPKi. More patient and higher-return borrowers stand to gain more from taking out additional

loans in the future, and thus are more likely to repay today. Clearly, ωt is decreasing in the gross interest

rate Rt: borrowers are less likely to repay expensive loans.

The impact of loan size on ωt varies depending on whether an individual is a new or repeat borrower.

For new borrowers, a larger initial loan has two countervailing effects on ωt=1:

∂ωt=1

∂L1
= δ ·MPKi · λ̃e2,i −R1 (18)

First, it increases the expected second loan size by raising the starting point of the loan ladder, thus

increasing the marginal benefit of repayment. Second, it increases the repayment burden, thus raising the

marginal cost of repayment. If the latter effect dominates, then ωt=1 will be decreasing in L1. This means

that a larger initial loan leads to higher default rates, as demonstrated empirically in Section 4.

For repeat borrowers, a larger current loan has an additional positive effect on the marginal benefit of

repayment:
21This reflects the fact that loans are very small, thus making the first order approximation reasonable.
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∂ωt
∂Lt

= δ ·MPKi · λet+1 + δ ·MPKi ·
∂λet+1

∂Lt
Lt −Rt (19)

Increasing Lt not only has a direct effect on the base loan size, but now also has an indirect effect on the

expected loan ladder slope. All else equal, this makes it more likely that the marginal benefit of repayment

will outweigh the marginal cost, such that ωt is increasing in Lt. This means that a larger repeat loan leads

to lower default on that loan, consistent with the empirical results in Section 5.

We can also determine how the borrower responds if she hits the maximum loan size on the lender’s loan

ladder. When this occurs, she can continue borrowing but loan sizes will no longer grow. Therefore, if she

reaches L̄ in period t− 1, the indifference condition between defaulting and repaying will take the following

form from period t forward:

ωL̄t =
1

1− δ
L̄ (δ ·MPKi −Rt)

Clearly, reaching the maximum loan size offered by the lender reduces repayment incentives. This puts an

upper bound on desired loan growth, as borrowers are more likely to default once they reach the maximum

loan size.

Case 2: St = 1 (t = T̄i)

Next, consider the case when a borrower on loan cycle t receives a signal that she has reached her maximum

loan cycle. I assume that the borrower ends the relationship with the lender at this point, either by repaying

her last loan and not taking out another, or by defaulting and thus being blocked from any future credit

by the lender. Let ωT̄t be the net outside option for a borrower who is just indifferent between these two

options:

F (Kt−1 + Lt)− F (Kt−1)−RtLt = F (Kt−1 + Lt)− F (Kt−1) + ωT̄t (20)

This leads to a very simple equation for ωT̄t :

ωT̄t = −RtLt (21)

Borrowers who find out they are at their maximum loan cycle will default if ωi > ωT̄t , or equivalently

when their net outside option is greater than the total loan cost. ωT̄t is unambiguously decreasing in both

LT̄ and RT̄ , meaning borrowers are more likely to default on larger and more expensive loans when they

reach their maximum required loan cycle. Like the maximum loan size offered by the lender, this also puts

upper bound on desired loan growth. Borrowers are more likely to default in that event as LT̄ increases.
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6.3 Predictions

The model generates a number of useful predictions. First, it suggests that an optimal progressive lending

scheme exists. Specifically, the lender can choose the loan ladder parameters to balance the tradeoff for

lender profitability in loan size growth. If loan improvement is too gradual, this reduces the opportunity cost

of defaulting, so even those types that most value future loans may default. Mechanically, a low λ reduces

the net value of repayment ωt and thus increases default on loan t. In the extreme case, everyone defaults

early on, so the lender makes large losses and has no customers remaining. Conversely, if loan sizes grow

too quickly, borrowers will postpone default and thus reach higher loan sizes before receiving a positive cap

signal. This reflects the fact that, in the model, high λ increases the net value of repayment ωt and thus

reduces default by borrowers who have not reached their loan cycle cap. Borrowers are then more likely

to default at these higher loan sizes, captured by the fact that ωT̄t is decreasing in Lt. At the extreme,

borrowers will postpone default until reaching the maximum loan size offered by the lender L̄, at which

point repayment incentivizes weaken significantly and default becomes much more likely for even borrowers

with a low net outside option. Section 7 explores this further by trying to estimate structurally what the

optimal average rate of loan growth is in this particular setting.

Next, the model captures how progressive lending generates endogenous screening. Borrowers who value

access to future loans less (higher ωi) default earlier on, at smaller loan sizes. In effect, this allows the lender

to “test” borrowers with the smaller early loans and sort out unobservably worse borrowers relatively cheaply.

Finally, it provides a useful lens for interpreting the empirical results. There are two broad reasons in

the model for the different observed impacts on default from increasing the first loan size versus increasing

later loan sizes (i.e., increasing the loan ladder slope). The first is selection, which creates differences in

types between the pools of first time and repeat borrowers. There is selection on the value placed in future

loans, such that borrowers with the highest net outside options will default on the first loan. Selection also

operates via borrowers’ initial expectations of the rate of loan size growth. Borrowers who expect the lowest

rate of loan growth after the first loan are more likely to default on the first loan, because the perceived

benefit of repayment is lower. The second reason stems from the difference between initial and repeat

loans in how expectations are formed about subsequent loan size growth. Intuitively, first time borrowers

face a fundamentally different problem, because they have no experience yet with the lender and thus less

information to utilize when thinking about the future path of loan sizes. In the model, a larger initial loan

doesn’t influence the expected growth rate of future loans, whereas larger repeat loans do. As a result,

larger repeat loans have a compounded effect on the expected path of future loan sizes, and thus also on

the marginal cost of default. Mechanically, this is reflected in the additional positive term in Equation 19

relative to Equation 18, which makes it more likely that the net value of repayment ωt is increasing in Lt

and thus that the probability of default is decreasing in Lt.
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7 Structural Estimation

I next use the structure of the model to estimate two key features governing borrower behavior: the distri-

bution of the net outside option, ωi, and the probability of hitting the maximum loan size in each period,

pt.

7.1 Distribution of Borrower Net Outside Options

The model implies a series of bounds on borrower net outside options, ωi. I can use these bounds to estimate

the distribution of ωi in my sample.22

First, consider a borrower who repays her last loan in the sample period, loan T . There are two potential

reasons in the model why she would do so: either her net outside option is no greater than the net value of

repayment on loan T (ωi ≤ ωT ), or she receives a signal that she has reached her maximum loan size but her

net outside option is below the repayment burden on loan t (ωi ≤ ωT̄T = −RTLT ). This implies the following

upper bound on the net outside option of non-defaulting borrowers:

ωi ≤ max{ωT , ωT̄T } = ωNDi,upper bound (22)

In most cases, ωT̄T < ωT , so the upper bound is given by ωT .

Next, consider a borrower who defaults at loan T , where T > 1. Again, the model gives two possible

explanations: either her net outside option exceeds the net value of repayment on loan t (ωi > ωT ), or she

receives a signal that she has reached her maximum loan cycle and her net outside option is greater than

the repayment burden on loan T (ωi > ωT̄T = −RTLT ). Given that the borrower made it to loan T , she

successfully repaid loan T − 1 . This means her net outside option must be no greater than the net value of

repaying loan T − 1 (ωi < ωT−1). Therefore, the net outside option of a borrower who defaults on loan T

must fall within the following bounds:

ωD,RBi,lower bound = min{ωT , ωT̄T } ≤ ωi < ωT−1 = ωRB,Di,upper bound (23)

In most cases, ωT̄T < ωT , so the lower bound is given by ωT̄T .

Finally, consider a first-time borrower who defaults (T = 1). While she may do so for the same two

reasons as repeat borrowers, we don’t have any information on previous loans to translate into an upper

bound. Therefore, we can only derive a lower bound for defaulters on first-time loans:

ωD,FTBi,lower bound = min{ω1, ω
T̄
1 } ≤ ωi (24)

In most cases, ωT̄1 < ω1, so the lower bound is given by ωT̄1 .
22Note that no borrowers have reached the lender’s maximum loan size offered, so I do not use any bounds related to this

constraint in this section.
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To summarize, I can calculate an upper bound on the net outside option of non-defaulters using loan

terms on their last observed loan during the sample period. For defaulters on the initial loan, I calculate a

lower bound using the loan terms on their first loan. For defaulters on repeat loans, I calculate an upper

(lower) bound using the loan terms on their second-to-last (last) observed loan during the sample period.

To do so, I first need to compute ωt and ωT̄t for each borrower over the relevant loan cycles. Recall

that ωt = 1
1−δLt

(
δ ·MPKi · λet+1 −Rt

)
and ωT̄t = −RtLt. While loan size Lt and the interest rate Rt are

available in the data, I need to make a few additional assumptions. I assume a monthly discount factor of

δ = .9. I simulate n = 100 draws of monthly marginal returns to capital for each individual, where MPKi

is drawn from a uniform distribution between 5% and 25%.23 I assume repeat borrowers form expectations

about future loan growth adaptively, as described in the model, such that λet+1 = Lt

Lt−1
. I need to use

an alternative assumption for new borrowers, however, given that they have no loan history off which to

extrapolate. I assume rational expectations, meaning that new borrowers correctly anticipate the lender’s

loan ladder progression policies. Borrowers don’t know there is heterogeneity in loan ladder progression,

so this means the loan ladder slope between the first and second loan is a random variable with a fixed

probability distribution given by the observed probabilities:

E[λ2] = λe2 =

N∑
j=1

P (λj,2) · λj,2 (25)

where λ2 = L2

L1
is the proportional loan growth in period t = 1, λj,2 is one of j different possible loan

growth rates between periods t = 1 and t = 2, and P (λj,2) are the empirically observed proportion of

borrowers who are allocated to each λj,2.

I first present results on the variation in the net value of repayment ωt and inverse repayment burden

ωT̄t for t > 1. I exclude the first loan cycle because of the difference in assumptions about λet+1. Figure

13, Panels A and B depict how ωt varies by loan cycle unconditionally and conditional on the loan cycle at

which a borrower eventually defaults, respectively. Panel A can be interpreted as the average upper bound

on the net outside option of people who repay loan t and the average lower bound on the net outside option

of people who don’t, conditional on not reaching their maximum loan cycle. Panel B controls for selection

effects, and gives a visual depiction of the strategy for identifying bounds for repeat borrowers who default:

the upper bound is given by ωT (the last point on each line) and the lower bound for those who default

strategically (not because they hit their maximum loan cycle) is given by ωT−1. Figure 14 shows how the

inverse of the repayment burden, ωT̄t , evolves by loan cycle. It provides visual confirmation of the assumption

in the model that the repayment burden is increasing in t. Figure 15, Panels A and B displays how average

default rates vary across ωt and ωT̄t , respectively. As would be expected, ωt is inversely related to default:

the higher the net value of repayment, the fewer borrowers default. The relationship between ωT̄t and default

is much noisier.
23This is consistent with the range of values in recent studies, including De Mel et al. (2008) and Hussam et al. (2017).
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Next, I compute upper and lower bounds using Equations 22, 23, and 24. Figure 16, Panels A and B show

the distribution of upper and lower bounds, respectively, by borrower type. The upper bound estimates,

which I have for both defaulters and non-defaulters and which primarily reflect variation in ωt, appear to be

approximately normally distributed, an observation which underlies my distribution estimation strategy.

Finally, I use these bounds to estimate the distribution of net outside options across all borrowers.

To do this, I use a censored regression model to estimate the mean and variance of net outside options

within MPKi buckets. I assume that, conditional on the MPKi draw, the net outside option is normally

distributed: wi|MPKi ∼ N(µ, σ2).

I have an upper bound (ωi,upper) on ωi for non-defaulters and defaulters on repeat loans and a lower

bound (ωi,lower) on ωi for all defaulters. This implies that non-defaulters (ND) are left censored (only an

upper bound), defaulters on initial loans (DFTB) are right censored (only a lower bound), and defaulters on

repeat loans (DRB) are on an interval (both lower and upper bounds). The likelihood contribution for each

borrower is the probability of them being on the interval in which they are observed:

ln L =
∑
i∈ND

ln Φ

(
ωi,upper − µ

σ

)
+

∑
i∈DFTB

ln

{
1− Φ

(
ωi,lower − µ

σ

)}
+
∑

i∈DRB

ln

{
Φ

(
ωi,upper − µ

σ

)
− Φ

(
ωi,lower − µ

σ

)} (26)

I then estimate the censored regression model via maximum likelihood separately for each decile ofMPKi

draws. The distributional parameters of the regression model with no covariates included are given in Table

11, Panel A. The mean of the distribution is generally negative but close to zero, and increasing in the

MPKi range. The distribution also grows tighter for higher values ofMPKi . Figure 17 plots the estimated

distribution for a range of values ofMPKi . These results imply that there is significant heterogeneity in the

value placed in future loans, with the average borrower actually facing a cost to defaulting (the equivalent of

a negative net outside option). Note that, because I conservatively use ωT̄T as the lower bound for defaulters

in most cases, even though many of these borrowers are likely defaulting despite not having reached their

loan size cap, my results generate a lower bound on the distribution estimates.

In order to explore heterogeneity across borrowers, I also estimate Equation 26 with current loan terms

included as covariates, again conditional on MPKi decile. This allows me to generate predicted net outside

options at the borrower level. Figure 18 displays the predicted net outside option distributions for non-

defaulters and defaulters across all MPKi draws. Consistent with the predictions of the model, borrowers

who do not default have net outside options that are lower on average than defaulting borrowers. Table 11,

Panel B contains the mean and standard deviation of the distribution for defaulters and non-defaulters by

MPKi decile. The mean predicted net outside option of defaulting borrowers is positive for MPKi values

above 15%, but not until 19% for non-defaulters. The distribution for defaulters is also tighter withinMPKi
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bands, likely reflecting the fact I can use both upper and lower bounds in the censored regression model.

Table 11, Panel C further differentiates between first-time and repeat borrowers.

7.2 Probability of Hitting Maximum Loan Cycle

I next estimate the probability of hitting an individual’s maximum number of loans in each loan cycle. To

do so, I need to differentiate between borrowers in my sample who default because their net outside option

is greater than the net value of repaying the loan versus those who default because they receive the loan cap

signal. I am only able to do this convincingly for repeat borrowers. Repeat borrowers who default for the

first reason must satisfy the condition that ωT−1 > ωT , or else they would have defaulted on their previous

loan. Borrowers who default for the latter reason do not need this condition to hold. Therefore, in the

context of the model, repeat borrowers who default on loan T when ωT−1 < ωT must be defaulting because

they hit the loan cap. The proportion of repeat borrowers who satisfy this property thus provides a lower

bound estimate of p. Using this approach, I estimate plower bound = 13.6%, with a standard error of .01%.

This implies that at least 50% of borrowers will have reached their loan cap by their fifth loan and 75% will

have done so by the 10th loan.

8 Structural Estimation Applications

8.1 Results for Repeat Borrower Quasi-Experiment Sample

I can use the results from Section 7 to interpret the empirical analyses of changes in progressive lending

policies to first-time borrowers and repeat borrowers in Sections 4 and 5, respectively.

Starting with the initial loan size quasi-experiment, recall that borrowers with a risk score just above the

threshold received a loan double the size of the loan received by borrowers just below the threshold. This

resulted in an increase in default on the first loan. This result is predicted by the model if the following

condition holds:

∂ωt=1

∂L1
= δ ·MPKi · λ̃2 −R1 < 0 (27)

Rearranging, I obtain the following condition on expected loan growth:

λ̃2 <
R1

δ ·MPKi

This condition does not hold using the median value of MPK used in the structural estimation (MPKi =

.15) and the empirically observed average of λ2 (i.e., λ̃2 = 1.52), combined with my assumption of δ =.9.

It would require the monthly interest rate to exceed 20%, which is not true in the data. With the lower

observed interest rates in the data, ωt increases from the $5 loan to the $10 loan, which would lead to fewer
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borrowers choosing to default on larger loan. This implies that either expected loan size growth is lower

than implied by rational expectations, or that productivity among first time borrowers is on the lower end

of the range we consider in the structural estimation. Alternatively, it is consistent with borrowers not

understanding or misinterpreting interest rates.

We can also interpret the repeat borrower experiment through the lends of the model and structural

estimation exercise. Recall that, in Section 5, the treatment group gets an “upgrading shock” in the post

period such that they are upgraded to a larger loan relative to their first loan, while the control group is

always upgraded. In the context of the model, this will lead to an increase in the value of repaying the loan

(a higher ωt) if the following condition holds:

∂ωt
∂Lt

= δ ·MPKi · λet+1 + δ ·MPKi ·
∂λet+1

∂Lt
Lt −Rt > 0 (28)

Figure 19 shows ωt for the treatment and control group in each period, assuming the median value of the

MPKi range considered in the estimation exercise.24 Consistent with Equation 28, ωt increases significantly

between the “off” period, when treatment borrowers receive a second loan of the same size relative to their

first loan, and the “on” period, when they are upgraded to a larger loan. The model then implies that, because

the net value of repaying the loan is greater for the treatment group in the “on” period, fewer borrowers

will have net outside options that are sufficiently high that they choose to default. This is consistent with

the empirical finding that the upgrading shock leads to a decline in the default rate of the treatment group

relative to the control group on their current loan. In addition, the model implies that borrowers will be

more likely to default eventually, because the faster loan ladder progression induced by the upgrading shock

means treatment borrowers will on average be on a higher loan cycle t when they are hit with the maximum

loan signal, and default probabilities are increasing in t.

8.2 Lender Simulation

Next, I consider how the lender can optimize the loan ladder. I assume the lender has the choice over two

variables: the initial loan size, L1, and the average rate of proportional loan growth, λ. To simplify the

analysis, I assume λ is constant over loan cycles. If this assumption were relaxed, the lender would want to

condition λ explicitly on borrower quality, such that better borrowers are able to progress faster up the loan

ladder to higher loan sizes whereas worse borrowers with a higher probability of default are forced to remain

at low loan sizes. Note that there are two possible interpretations for λ. First, all borrowers receive a loan

that is λ times the size of their previous loan, conditional on repaying their previous loan. Conversely, the

lender chooses some proportion of borrowers to upgrade to a loan that is λUG times their previous loan (with

the rest remaining on the same level), and λ is the weighted average of λUG and 1. This latter formulation

is more consistent with the empirical analysis in Section 5, when the relevant experiment was not a change
24Results are qualitatively similar using any other value of MPKi or averaging over all values of MPKi; all that is impacted

is the scale.

34



in slope per se but a change in the percentage of borrowers who could proceed up the loan ladder.

8.3 Derivation

Because of my focus on loan size rather than price, I assume the lender sets a fixed interest rate across all

loans. Specifically, the lender sets the interest rate at some fixed markup m over its cost of funds:

Rt = R = r +m (29)

This implies that the profit on a repaid loan is a linear function of the loan size:

πR(Lt) = RLt − rLt = mLt (30)

Given the binary default decision assumed in the model, profit on a defaulted loan is given by:

πD(Lt) = −rLt (31)

The lender seeks to maximize profits per borrower. I assume that borrowers take out one loan per month

(the modal duration offered by the lender), and the lender discounts future profits with monthly discount

factor δ = .9. Therefore, the profit for borrower i who takes out T loans before defaulting is given by:

Π =

T−1∑
t=1

βt−1πR(Lt) + βT−1πD(LT ) (32)

In the first period, the lender’s choice of initial loan size determines the proportion of the distribution

that defaults strategically. The initial loan size determines ω1:

ω1 =
1

1− δ
L1

(
δ ·MPKi · λ̃e2 −R

)
(33)

Borrowers with ωi > ω1 default strategically, and borrowers with ωi < ω1 do not. In each period,

including the first, there is a probability p that a borrower hits her loan cap. In that case, borrowers default

if ωi > ωT̄t = −RtLt and repay (but do not take another loan) otherwise. With a weakly increasing loan

ladder, it is always the case that ωt > ωT̄t . Therefore, on the first loan cycle, expected profits per borrower

for the lender are given by:

E[Π1] = p

∫ ωT̄
t

−∞
πR(L1)dF (ωi)+p

∫ ∞
ωT̄

t

πD(L1)dF (ωi)+(1−p)
∫ ω1

−∞
πR(L1)dF (ωi)+(1−p)

∫ ∞
ω1

πD(L1)dF (ωi)

(34)
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Plugging in and rearranging, we obtain:

E[Π1] = L1

{
(1− p)RF (ω1) + pRF (ωT̄1 )− r

}
(35)

Next, I derive expected profits per borrower on repeat loans and combine this with equation 35 to compute

total expected profits per borrower. In order to provide the strongest incentives for repayment, the loan

ladder must be upward sloping. This is due to the fact that, with an upward sloping loan ladder and a

flat interest schedule, ωt is weakly increasing in t. Therefore, borrowers either default on the first loan or

continue to repay until hitting their loan cap. This implies that the expected value of profits per borrower

on loan t, conditional on being below the maximum loan size offered by the lender, is given by:

E[Πt|t>1|Lt < L̄] = (1− p)t−1

{
(1− p)

∫ ω1

−∞
πR(Lt)dF (ωi) + p

∫ ωT̄
t

−∞
πR(Lt)dF (ωi) + p

∫ ω1

ωT̄
t

πD(Lt)dF (ωi)

}
(36)

Plugging in:

E[Πt|t>1|Lt < L̄] = (1− p)t−1λt−1L1

{
mF (ω1) + pR(F (ωT̄t )− F (ω1))

}
(37)

Conversely, if a borrower reaches the maximum loan size, expected profits drop for a few different reasons.

First, some portion of borrowers will now default strategically, because ωL̄ < ωL̄−1, reflecting the drop in

the loan ladder slope from some positive value to flat. Second, because loan sizes are no longer growing, this

no longer counteracts the negative pressure from borrowers deciding to default because they satisfy their

(randomly allocated) borrowing needs. For all loans after the cap, expected profits per borrower are given

by:

E[Πt|t>1|Lt = L̄] =(1− p)t−1

{
(1− p)

∫ ωL̄

−∞
πR(Lt)dF (ωi) + (1− p)

∫ ωL̄−1

ωL̄

πD(Lt)dF (ωi)

}

+ (1− p)t−1

{
p

∫ ωT̄
t

−∞
πR(Lt)dF (ωi) + p

∫ ωL̄−1

ωT̄
t

πD(Lt)dF (ωi)

}
=(1− p)t−1L̄

{
(1− p)RF (ωL̄)− rF (ωL̄−1) + pRF (ωT̄t )

}
(38)

Let tL̄ indicate the period a borrower reaches the lender’s maximum loan size. Then, total expected

profits on all repeat loans are:
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∞∑
t=2

E[Πt|t>1] =

tL̄−1∑
t=2

E[Πt|t>1|Lt < L̄] +

∞∑
t=L̄

E[Πt|t>1|Lt = L̄] (39)

=L1

tL̄−1∑
t=2

(1− p)t−1λt−1
{
mF (ω1) + pR(F (ωT̄t )− F (ω1))

}
+ L̄

∞∑
t=L̄

(1− p)t−1
{

(1− p)RF (ωL̄)− rF (ωL̄−1) + pRF (ωT̄t )
}

Total expected profits per borrower are given by the sum of Equations 35 and 39:

E[Π] =E[Π1] +

∞∑
t=2

βt−1E[Πt|t>1]

=(1− p)t−1λt−1L1

{
mF (ω1) + pR(F (ωT̄t )− F (ω1))

}
(40)

+ L1

tL̄−1∑
t=2

βt−1(1− p)t−1λt−1
{
mF (ω1) + pR(F (ωT̄t )− F (ω1))

}
+ L̄

∞∑
t=L̄

βt−1(1− p)t−1
{

(1− p)RF (ωL̄)− rF (ωL̄−1) + pRF (ωT̄t )
}

8.4 Results

For the simulation exercise, I have to make a number of assumptions about parameter values. Specifically,

I impose the maximum loan size observed in the data and offered initial loan sizes, as well as the current

average monthly interest rate. I consider profits per borrower over a finite number of loans, ranging from 10

to 30. I assume a cost of funds of 10%. I use the estimated lower bound of 13.6% for p, the probability of a

borrower hitting her maximum loan cycle in each period, as my baseline, but also consider additional values

ranging from 20%-40%. I then simulate Equation 40 to determine the profit-maximizing λ.

My baseline simulation results (with p = 13.6%) for an upward-sloping loan ladder are shown in Figure

20. Table 12, Panel A contains numerical estimates of the optimal loan ladder slope (λ) , by initial loan

size, as well as the corresponding level of profits on the initial loan and in total. Note that while profits vary

depending on the total number of loans considered for the simulation, the optimal λ does not.

A few key observations are apparent. First, profits are increasing in initial loan size. This is despite the

fact that profits on the initial loan are actually decreasing in initial loan size, consistent with the empirical

analysis in Section 4. Second, the optimal loan ladder slope is decreasing in initial loan size. Taken together,

these reflect the tradeoff in advancing borrowers quickly up the loan ladder. Quick advancement provides

strong incentives for repayment (in this case, any positive λ generates sufficiently strong incentives because

of the simplifying assumption of a constant interest rate) but also means borrowers will be more likely to
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default upon the event they reach the limit of their credit needs or hit the lender’s loan ladder cap. A higher

initial loan size is equivalent to starting farther up the ladder, so this is balanced by a more gradual optimal

rate of loan ladder progression.

I also compute results for alternative assumptions for p, the probability of a borrower hitting her maximum

loan cycle in each period. Specifically, I consider p = {20%, 30%, 40%}. The motivation for exploring various

higher values of p is two-fold. First of all, I am only able to estimate a rough lower bound for p from the

data, and so estimates based on p = 13.6% are likely to be biased. Second, my simplifying assumption that p

is constant across loan cycles is likely unrealistic, but necessary for estimation purposes. As borrowers reach

higher loan cycles, they are more likely to hit ability-to-pay constraints, which would be captured by an

increase in p. Figure 21, Panels A - C and Table 12, Panels B - D contain results for p = 20%, p = 30%, and

p = 40%, respectively. The optimal loan ladder slope corresponding to each initial loan size increases slightly

between p = 13.6% and p = 20%, but is then decreasing thereafter. Initial profits and overall profits are both

strictly decreasing in p. This reflects that a higher p reduces the lender’s incentive to advance borrowers up

the loan ladder, because they are now more likely to receive a signal that they no longer need to borrow any

longer, and are more likely to default in this event if they are higher up the loan ladder. The level of profits

for higher values of p is more consistent with actual profits observed by the lender, suggesting these higher

p values may do a better job of capturing actual borrower behavior than the lower bound estimate of p used

in the baseline results.

These results imply that, for the average borrower, the lender should choose its largest feasible initial loan

size ($10 in this setting) combined with a moderate loan ladder slope. Interestingly, the optimal progressive

lending policy for a one-fit-all-setting implied by these results is very close to what the lender follows during

the sample period. In the baseline simulations, the optimal policy is an initial loan size of $10 and a loan

ladder slope of 1.49. The lender does indeed start most borrowers out with an initial loan size of $10, and

the average loan ladder slope is around 1.5 (although it varies over the loan ladder).

9 Conclusion

In this paper, I empirically analyze the impact of the design of dynamic incentive schemes on borrower

repayment behavior. I use quasi-experimental variation in an African digital lender’s progressive lending

policies to isolate the impact of changes in the initial loan size and loan ladder progression on loan-level

and borrower-level default rates. I find that giving an exogenously larger loan to new borrowers leads to a

higher rate of default on the first loan, consistent with positive moral hazard and repayment burden effects,

but no change in a borrower’s overall probability of default. By contrast, I show that increasing the size

of the second loan relative to the first, or in other words, making the loan ladder steeper, leads to a lower

loan-level default rate but a higher probability of eventual default. These results suggest that progressive

lending policies cause borrowers to shift their timing of default in meaningful ways. I provide suggestive
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evidence that the underlying mechanism explaining these results is a strategic repayment motive, whereby

some subset of borrowers repays loans in order to obtain larger loans in the future. I then write down

and estimate a structural model consistent with this story. I find that there is a large estimated degree of

heterogeneity in borrower valuation of access to future loans, a fact that lenders can utilize to mitigate risk

if they are able to effectively identify and sort borrowers according to this metric. Finally, I use these results

to simulate a profit-maximizing progressive lending scheme for the lender in this setting.

My results have important implications for lenders and regulators. As fintech startups continue to upend

consumer lending markets, pushing them to become more geographically decentralized and based on digital

data rather than “soft” relationship-based information, lenders are relying increasingly on dynamic incentives

and other such tools to encourage repayment. This is particularly true in developing countries, where access

to formal sector loans is generally lower. My results suggest that the stage of the relationship matters

significantly for the impact of various policies on outcomes, something lenders should take into account when

designing their lending schemes. My results also demonstrate that progressive lending can have potentially

perverse effects on borrower behavior, encouraging certain borrowers to try to take advantage of the system.

Lenders need to implement carefully-designed, risk-based dynamic schemes that encourage strategic types

to exit the system at low loan sizes by restricting loan size growth for these borrowers, while allowing better

borrowers to continue to progress up to larger, more profitable loan sizes. From a regulatory perspective,

more robust credit information sharing systems, which would increase the cost to borrowers of such a strategy

by fully excluding defaulters from any credit - rather than just credit from a particular lender - would also

help to ameliorate this issue. Even in settings where credit reporting bureaus are present, it is important for

all lenders to be required to contribute both positive and negative reports and borrowers to be made aware

of the importance of remaining in good standing.
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Appendix

A Specification Checks

A.1 Initial Loan Size

In this section, I present a series of specification checks to address potential threats to the causal interpretation

of my results from Section 4. I first check for any evidence of selective borrowing based on loan size eligibility

in my sample. This would invalidate my regression discontinuity results by creating additional discontinuities

in borrower characteristics around the loan size threshold. For instance, if unobservably worse applicants

were more likely not to reapply for the smaller loan, this could explain why I find lower default rates just

below the threshold relative to just above. To explore this issue, I first compute the percentage of applicants

rejected for the larger loan who chose not to reapply for the smaller loan despite being eligible. This amounts

to only about 5% of applicants. This suggests that, even if there were large differences in borrower qualities

between those who reapplied and those who didn’t, the magnitude of dropouts is too small to drive my

results. Second, I compare the distribution of risk scores based on reapplication choice. As shown in Figure

22, the two distributions are very similar. While I cannot directly test for any differences in unobservable

risk characteristics between the two groups, the fact that they are very similar on observable risk measures

is reassuring.

My second set of specification checks concerns the possibility of manipulation of the risk score by bor-

rowers. If applicants could influence the risk score and were differentially able to do so, this again could

create discontinuities in unobservable borrower characteristics around the loan eligibility threshold. In my

setting, this type of manipulation is very unlikely: applicants aren’t even told that a risk score is computed,

and have no knowledge of how it is computed. In addition, many of the variables that enter into the risk

score are inherently unable to be manipulated. Figure 23 provides visual evidence confirming the lack of

bunching above the threshold. I also conduct a formal manipulation test based on density discontinuities,

as first proposed by McCrary (2008), using a nonparametric density estimator proposed in Cattaneo et al.

(2017). Formally, this procedure tests the null hypothesis that the density of the running variable (the risk
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score in this setting) is continuous at the threshold. Reassuringly, the test produces a T-statistic of 1.45

with an associated p-value of .15, such that I am not able to reject the null.

Next, I check that my results identify real discontinuities caused by the change in initial loan size receipt by

replicating the analysis using a sample of borrowers from a later time period, when the lender had eliminated

its new borrower sorting policy. Figure 24, Panel A depicts the first-stage relationship between the risk score

(relative to the $10 threshold) and initial loan size during my sample period and the later period. During

the later period, no borrowers are required to take out a smaller loan because of an insufficiently high risk

score, so nearly all borrowers end up with the larger $10 loan. This means there is no longer a policy-

induced discontinuity in loan size at the original risk score threshold. Table 13 presents a formal estimation.

While the effect is significant under the linear specification, the magnitude is not economically meaningful.

Figure 24, Panel B shows the reduced-form relationship between risk score and default. It provides graphical

evidence that the sharp discontinuity in default rates at the threshold during my sample period disappears

in the later, no-sorting period. It also confirms the non-linear relationship between risk score and default,

and in particular the higher predictive power of the risk score above the threshold relative to below. Because

of the lack of a meaningful first stage, I do not present formal IV estimates.

Finally, I confirm that my results are not unique to the specific time period and set of borrowers I use

in my main analysis. To do so, I replicate the analysis using data from a later period in which the lender

reinstituted its policy of sorting borrowers into initial loan sizes according to risk scores. One small difference

during this period is that borrowers who qualified for larger loans had the option to choose a smaller loan if

they so desired, although in practice very few do so. Panels A and B of Figure 25 replicate the first-stage and

reduced-form figures, respectively, using this alternative sorting period. As in the earlier period, there is a

sharp jump in both average loan size and the probability of default exactly at the risk score threshold. Tables

14 and 15, which provide formal regression estimates of the first stage and IV, confirm this conclusion.25

Borrowers with a risk score above the $10 threshold receive a loan that is about $4.10 larger on average, or

equivalently are about 80% more likely to take out the $10 initial loan product; as a result, they are 8.2 to

9.6 ppts more likely to default, relative to an average default rate during this period of 16.9%. Therefore,

receiving a loan that is two times larger leads to a 49 to 57 percent increase in default, identical in direction

and similar in magnitude to my main results.

A.2 Loan Ladder Progression

In this section, I present some checks on the interpretation of my results from Section 5. The first concern

I address is selective borrowing, which would be problematic if borrowers differentially decide to take out

a second loan depending on whether they qualify for a larger loan relative to their first loan or not. Note

that, in order to explain the results on repeat borrowers’ loan ladder progression, selective borrowing would
25Note that I do not present local linear estimates for this exercise because of the small range of observations below the

threshold.
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actually need to work in the opposite direction as in the analysis of initial loan size in Section 4. Among new

borrowers, unobservably riskier applicants would need to be less likely to apply for a smaller loan relative to

a larger loan to explain the lower relative default rate on smaller loans around the loan eligibility threshold.

Among repeat borrowers, unobservably riskier applicants would need to be more likely to reapply for the

smaller loan that they qualified for during the “off” period relative to the larger loan during the “on” periods in

order to explain the observed pattern of default. This type of selective borrowing seems highly unlikely. And

even if it were plausible, very few borrowers end their relationship with the lender after successfully repaying

their first loan. Figure 26 shows the probability of reapplying and taking out another loan conditional on

being upgraded or remaining on the same level relative to the previous loan, by loan cycle. In the primary

analysis, I focus only on second-time borrowers. For these borrowers, the probabilities of reapplying and

successfully getting another loan, respectively, are 98.4% and 98.0% if upgraded and 95.8% and 94.3% if

they stay on the same level. While borrowers are slightly less likely to reapply if they aren’t upgraded,

overall re-application and re-approval rates are too high for this to pose any empirical issues. By contrast,

reapplication rates are much lower if borrowers are downgraded. This is a primary reason for not studying

the impact of downgrading on borrower behavior, as selective borrowing would present a much larger issue

for inference.

Next, I present some additional suggestive evidence that corroborates my results. As mentioned previ-

ously, the OTP upgrade threshold was set at P% prior to November 2015. This means there is an additional

“off” period in which borrowers in the (P − 25)% to P% were not upgraded, as shown in Panel A of Figure

27. Unfortunately for my purposes, low loan volume means the data are quite noisy, particularly when I

split the sample, so I exclude them from my core results. However, my regression results are robust to the

inclusion of weeks in this period with at least 50 loans in both the treatment and control groups, as shown

in Table 16. Graphical evidence in Panel B of Figure 27 provides suggestive evidence of the same pattern

observed in the later data.

Unfortunately, because the lender has always utilized the OTP threshold system to regulate movement

up and down the loan ladder, it is not possible to use an alternative time period when the policy was not in

effect (and thus when the DD estimate should be null) as a robustness check. Likewise, it is not possible to

construct an alternative control group as an additional robustness check. The only other logical alternative

control would be a set of borrowers who face a flat loan ladder regardless of period. This would then identify

the upgrading shock that the treatment group experiences in the “on” periods relative to a control group

that is never upgraded or downgraded, rather than a control group who is always upgraded. However, there

is no OTP percentage range for whom this holds.
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Figures

Figure 1: Key Moments by Loan Cycle

(a) Fraction Still Borrowing (b) Weeks Since First Loan Disbursement

(c) Loan Size (d) Default Rate

This figure presents some key moments related to borrowing behavior delineated by loan cycle. Solid lines
indicate means, while dashed lines indicate 95th percent confidence intervals. Loan cycle refers to the number
of loans a borrower has taken out thus far. Fraction still borrowing refers to the percentage of borrowers
who are still active at a given loan cycle. Weeks since first loan disbursement is calculated as the number
of weeks between the disbursement of the first loan and the disbursement of the n-th loan, where n refers
to the loan cycle indicated. Loan size is the amount of principal disbursed. The default rate is measured as
the percentage of borrowers at that loan cycle with loans that reach 90 days past due.
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Figure 2: Default Rates by Loan Turnover Rate

This figure displays a kernal-weighted local polynomial regression of the average borrower-level default rate
on the average number of days a borrower waits between loans. The solid line indicates the smoothed values,
and the shaded gray area indicates the 95th percent confidence interval. Borrower-level default rates are
calculated as the percentage of borrowers who ever default. A borrower is deemed to have defaulted if her
current loan reaches 90 days past due. Because of the lender’s policy of full exclusion of defaulters, this is
analagous to borrowers who default on their last loan with the lender. The number of days between loans
is calculated as the number of days between the last payment made on a borrower’s previous loan and the
disbursement of her next loan.
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Figure 3: Initial Loan Size: First Stage, Loan Size

(a) Global Polynomial (b) Global Linear

(c) Local Linear

This figure depicts the first-stage relationship between the risk score threshold and the average initial loan
size received by new borrowers during the sample period. The risk score is an internally-calculated measure
of borrower credit-worthiness. There were only two initial loan sizes during this period, equal approximately
to $5 or $10. Each panel plots average loan sizes across risk score bins, where the risk score is measured
relative to the threshold. It is presented in this way because the actual value of the risk score did not have
any meaning during this period; it was only relevant in terms of how it compared to the threshold. Panel A
plots average loan sizes across risk score bins with a width of .01 units (about 2% of the total range of risk
scores during this period), as well as fitted values from a first-stage regression with a third-order polynomial
to control for the risk score, where the shape is allowed to vary on either side of the threshold. Panel B
instead uses a linear trend, interacted with an indicator of being above the cutoff. Panel C shows the local
linear approximation within the optimal data-determined bandwidths above and below the cutoff.
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Figure 4: Initial Loan Size: First Stage, $10 Indicator

(a) Global Polynomial (b) Global Linear

(c) Local Linear

This figure depicts the first-stage relationship between the risk score threshold and the probability that a
new borrower receives the larger initial loan of $10 during the sample period. The risk score is an internally-
calculated measure of borrower credit-worthiness. There were only two initial loan sizes during this period,
equal approximately to $5 or $10. Each panel plots average probabilities across risk score bins, where the
risk score is measured relative to the threshold. It is presented in this way because the actual value of the
risk score did not have any meaning during this period; it was only relevant in terms of how it compared
to the threshold. Panel A plots probabilities of getting the larger loan across risk score bins with a width
of .01 units (about 2% of the total range of risk scores during this period), as well as fitted values from a
first-stage regression with a third-order polynomial to control for the risk score, where the shape is allowed
to vary on either side of the threshold. Panel B instead uses a linear trend, interacted with an indicator of
being above the cutoff. Panel C shows the local linear approximation within the optimal data-determined
bandwidths above and below the cutoff.
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Figure 5: Initial Loan Size: Reduced Form, Loan-Level Default Rate

(a) Global Polynomial (b) Global Linear

(c) Local Linear

This figure depicts the reduced-form relationship between the risk score threshold and average default rates
on loans to new borrowers during the sample period. The risk score is an internally-calculated measure of
borrower credit-worthiness. The average default rate is calculated as the percentage of loans that reach 90
days past due. Each panel plots average default rates across risk score bins, where the risk score is measured
relative to the threshold. It is presented in this way because the actual value of the risk score did not have
any meaning during this period; it was only relevant in terms of how it compared to the threshold. Panel
A plots average default rates across risk score bins with a width of .01 units (about 2% of the total range
of risk scores during this period), as well as fitted values from a reduced-form regression with a third-order
polynomial to control for the risk score, where the shape is allowed to vary on either side of the threshold.
Panel B instead uses a linear trend, interacted with an indicator of being above the cutoff. Panel C shows
the local linear approximation within the optimal data-determined bandwidths above and below the cutoff.
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Figure 6: Initial Loan Size: Reduced Form, Longer-Term Credit Outcomes

(a) Borrower-Level Default Rate (b) Number of Loans

(c) Last Loan Size

This figure depicts the reduced-form relationship between the risk score threshold for new borrowers and
longer-term credit outcomes. Each outcome is measured as of September 2017, representing an average
of 85 weeks since a borrower’s first loan was disbursed. Each panel plots average values of the outcome
variable across risk score bins with a width of .01 units (about 2% of the total range of risk scores during
this period), where the risk score is measured relative to the threshold. Each panel also includes fitted
values from a reduced-form regression with a third-order polynomial to control for the risk score, where the
shape is allowed to vary on either side of the threshold. The risk score is an internally-calculated measure of
borrower credit-worthiness. Borrower-level default rates are calculated as the percentage of borrowers who
ever default, where a borrower is deemed to have defaulted if her current loan reaches 90 days past due. The
number of loans refers to the total number of loans taken out by a borrower from this lender. The last loan
size is the amount disbursed on the final loan recorded for each borrower.
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Figure 7: Loan Ladder Progression: Identification Strategy

This figure depicts the identification strategy for the loan ladder progression difference-in-differences analysis.
The control group is composed of borrowers with an on-time payment percentage on their first loan of greater
than P%. These borrowers were always upgraded to a larger loan size for their second loan. The treatment
group is made up of borrowers with an on-time payment percentage on their first loan of between (P − 25)%
and P%. These borrowers were upgraded to a larger loan in November 2015 and March 2016, but were
forced to take out a second loan of the same size as their first loan if they reapplied between December 2015
and February 2016.
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Figure 8: Loan Ladder Progression: Loan Ladder Slope (Ratio of Second Loan Size to First Loan Size)

This figure depicts the ratio of the size of a borrower’s second loan to the size of her first loan, split by
treatment and control groups in the loan ladder progression quasi-experiment. The control group is composed
of second-time borrowers who took out a $10 loan initially and repaid a sufficient number of installments
of their first loan such that they were always upgraded to a second loan of $20. The treatment group is
composed of second-time borrowers who also took out a $10 loan initially, but whose on-time payment record
on their first loan was in a lower range. For this group, whether they were upgraded to a larger second loan
of $20 or were required to take a second loan that was the same size as their first loan depended on when they
applied for their second loan, due to variation over time in the lender’s upgrading policies. The “off” period
corresponds to when treatment borrowers were not upgraded to a larger second loan, and thus received a
second loan that was the same size as their first; the “on” periods correspond to when treatment borrowers
were upgraded to a larger second loan.
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Figure 9: Loan Ladder Progression: Difference in Default Rates (Treatment - Control)

This figure depicts the estimated difference in second-loan default rates between the treatment and control
groups by loan cohort week, along with the corresponding 95 percent confidence intervals. The control group
is composed of second-time borrowers who took out a $10 loan initially and repaid a sufficient number of
installments of their first loan such that they were always upgraded to a second loan of $20. The treatment
group is composed of second-time borrowers who also took out a $10 loan initially, but whose on-time
payment record on their first loan was in a lower range. For this group, whether they were upgraded to a
larger second loan of $20 or were required to take a second loan that was the same size as their first loan
depended on when they applied for their second loan, due to variation over time in the lender’s upgrading
policies. The “off” period corresponds to when treatment borrowers were not upgraded to a larger second
loan, and thus received a second loan that was the same size as their first; the “on” periods correspond to
when treatment borrowers were upgraded to a larger second loan. A loan is marked as defaulted when it is
90 days past due.
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Figure 10: Loan Ladder Progression: Other Longer-Term Credit Outcomes

(a) Borrower-Level Default Rate (b) Number of Loans

(c) Last Loan Size

This figure depicts the estimated difference in longer-term credit outcomes between the treatment and control
groups by loan cohort week, along with the corresponding 95 percent confidence intervals. Each outcome
is measured as of September 2017, representing an average of 88 weeks since a borrower’s first loan was
disbursed. The control group is composed of second-time borrowers who took out a $10 loan initially and
repaid a sufficient number of installments of their first loan such that they were always upgraded to a second
loan of $20. The treatment group is composed of second-time borrowers who also took out a $10 loan
initially, but whose on-time payment record on their first loan was in a lower range. For this group, whether
they were upgraded to a larger second loan of $20 or were required to take a second loan that was the same
size as their first loan depended on when they applied for their second loan, due to variation over time in
the lender’s upgrading policies. The “off” period corresponds to when treatment borrowers are not upgraded
to a larger second loan, and thus receive a second loan that is the same size as their first; the “on” periods
correspond to when treatment borrowers are upgraded to a larger second loan. Borrower-level default rates
are calculated as the percentage of borrowers who ever default, where a borrower is deemed to have defaulted
if her current loan reaches 90 days past due. The number of loans refers to the total number of loans taken
out by a borrower from this lender. The last loan size is the amount disbursed on the final loan recorded for
each borrower.
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Figure 11: Loan Ladder Progression: Default Rates by Loan Turnover Rate between First and Second Loans

This figure displays a kernal-weighted local polynomial regression of the average borrower-level default rate
on the average number of days a borrower waits between the first and second loan. The solid line indicates
the smoothed values, and the shaded gray area indicates the 95th percent confidence interval. Borrower-level
default rates are calculated as the percentage of borrowers who ever default. A borrower is deemed to have
defaulted if her current loan reaches 90 days past due. Because of the lender’s policy of full exclusion of
defaulters, this is analagous to borrowers who default on their last loan with the lender. The number of days
between the first and second loan is calculated as the number of days between the last payment made on a
borrower’s first loan and the disbursement of her second loan.
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Figure 12: Loan Ladder Progression: Default Rates, Split by Loan Turnover Rate

(a) Days between Loans <= Median (b) Days between Loans > Median

This figure depicts the estimated difference in second-loan default rates between the treatment and control
groups by loan cohort week, split by the loan turnover rate, along with the corresponding 95 percent confi-
dence intervals. Panel A shows the difference in default rates for “fast turnover” borrowers, defined as those
who took out their second loan within the median time of one day after repaying their first loan. Panel
B replicates the analysis for the “slow turnover” borrowers, corresponding to those who waited longer than
one day after repaying their first loan to take out their second. A loan is marked as defaulted when it is 90
days past due. The control group is composed of second-time borrowers who took out a $10 loan initially
and repaid a sufficient number of installments of their first loan such that they were always upgraded to a
second loan of $20. The treatment group is composed of second-time borrowers who also took out a $10
loan initially, but whose on-time payment record on their first loan was in a lower range. For this group,
whether they were upgraded to a larger second loan of $20 or were required to take a second loan that was
the same size as their first loan depended on when they applied for their second loan, due to variation over
time in the lender’s upgrading policies. The “off” period corresponds to when treatment borrowers are not
upgraded to a larger second loan, and thus receive a second loan that is the same size as their first; the “on”
periods correspond to when treatment borrowers are upgraded to a larger second loan.
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Figure 13: Structural Estimation: Unconditional Net Value of Repayment (ωt)

(a) Unconstrained Net Value of Repayment, by Loan Cycle (b) Unconstrained Net Value of Repayment, by Defaulted Loan Cycle

This figure depicts how the unconditional net value of repayment (ωt) varies by loan cycle. ωt is defined as
the net outside option for a borrower who is just indifferent between defaulting in period t and period t+ 1,
conditional on not reaching the maximum required loan cycle. As derived in Section 6 and shown in Equation
17, ωt is a function of loan size Lt, the interest rate Rt, expected loan size growth λet+1, the discount factor
δ, and the marginal product of capital draw MPKi. It can therefore be calculated for each loan, conditional
on assumptions about λet+1, δ, and MPKi. I assume λet+1 = Lt

Lt−1
, δ = .9, and MPKi = 15%. Panel A

shows the average value of ωt for loans taken out at a given loan cycle. Panel B shows average values of ωt
across loan cycles, conditional on the loan cycle at which a borrower eventually defaults. For both figures, I
exclude the first loan cycle because of the difference in assumptions about expected loan growth λet+1. Units
for ωt are in terms of dollars.

Figure 14: Structural Estimation: Inverse Repayment Burden (ωT̄t )

This figure shows how the inverse of the repayment burden, ωT̄t , evolves by loan cycle. In each period,
each borrower has some (unknown) probability of receiving a signal that she has reached her maximum loan
cycle. Borrowers who find out they are at their maximum loan cycle will default if their net outside option
is greater than ωT̄t , or equivalently when their net outside option is greater than the total cost of repaying
the loan. As derived in Section 6 and shown in equation 21, ωT̄t is a function of loan size Lt and the interest
rate Rt, and thus can be calculated for each loan. Units for ωT̄t are in terms of dollars.
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Figure 15: Structural Estimation: Net Value of Repayment (ωt) and Inverse Repayment Burden (ωT̄t ) versus
Average Default Rates

(a) Net Value of Repayment (ωt) (b) Inverse Repayment Burden (ωL̄
t )

This figure displays how average default rates vary across the net value of repayment (ωt) and the inverse
repayment burden (ωT̄t ). In the model, borrowers default once the net value of repayment falls below their
net outside option if they don’t reach their maximum required loan cycle, and if their net outside option is
above the repayment burden once they do reach their last required loan. ωt is a function of loan size Lt, the
interest rate Rt, expected loan size growth λet+1, the discount factor δ, and the marginal product of capital
draw MPKi. It can therefore be calculated for each loan, conditional on assumptions about λet+1, δ, and
MPKi. I assume λet+1 = Lt

Lt−1
, δ = .9, and MPKi = 15%. Likewise, ωT̄t is only a function of loan size Lt

and the interest rate Rt, and thus can also be calculated for each loan. Average default rates are calculated
as the percentage of loans marked as defaulted, which occurs when it reaches 90 days past due. Units for ωt
and ωT̄t are in terms of dollars.
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Figure 16: Structural Estimation: Upper and Lower Bound Densities for Borrower Net Outside Options (ωi)

(a) Upper Bounds (b) Lower Bounds

This figure shows the densities of the estimated upper and lower bounds on borrower net outside options,
split by first-time borrowers (FTB) versus repeat borrowers (RB) and borrower-level default status. In the
model presented in Section 6, borrowers differ in the extent to which they value access to future loans from
the lender. This is captured by heterogeneity across borrowers in a net outside option parameter, ωi, which
they receive if positive or pay if negative in the event of default. The model implies a series of bounds on
the value of a borrower’s net outside option, depending on whether or not they have defaulted and how
many loans they have taken out. These bounds can then be calculated as a function of loan size Lt and the
interest rate Rt and conditional on assumptions about expected future loan growth λet+1, the discount factor
δ, and a borrower’s marginal product of capital draw MPKi. I assume λet+1 = Lt

Lt−1
, δ = .9, and I simulate

n = 100 draws of monthly marginal returns to capital for each individual, where MPKi is drawn from a
uniform distribution between 5% and 25%. Units for the bounds are in terms of dollars.
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Figure 17: Structural Estimation: Borrower Net Outside Option (ωi) Distribution Estimates

This figure plots the estimated distribution of borrowers’ net outside option (ωi) for a range of values of
the marginal product of capital draw, MPKi. In the model presented in Section 6, borrowers differ in the
extent to which they value access to future loans from the lender. This is captured by heterogeneity across
borrowers in a net outside option parameter, ωi, which they receive if positive or pay if negative in the
event of default. I use a censored regression model to estimate the mean and variance of net outside options
within MPKi buckets, assuming that, conditional on the MPKi draw, the net outside option is normally
distributed: wi|MPKi ∼ N(µ, σ2). Units for ωi are in terms of dollars.
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Figure 18: Structural Estimation: Net Outside Option Distribution Estimates by Default Status

This figure plots the estimated values and distribution of borrowers’ net outside option (ωi), split by borrower-
level default status. In the model presented in Section 6, borrowers differ in the extent to which they value
access to future loans from the lender. This is captured by heterogeneity across borrowers in a net outside
option parameter, ωi, which they receive if positive or pay if negative in the event of default. I use a censored
regression model to estimate the mean and variance of net outside options within MPKi buckets, assuming
that, conditional on the MPKi draw, the net outside option is normally distributed: wi|MPKi ∼ N(µ, σ2).
This plot shows average values across all possible MPKi draws. Defaulters are defined as borrowers whose
final loan during the sample period ended in default, meaning it was at least 90 days past due. Units for ωi
are in terms of dollars.
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Figure 19: Structural Estimation Applications: Net Value of Repayment (ωt) in Repeat Borrower Experiment

This figure shows the average net value of repayment (ωt) for the treatment and control group in each period.
ωt is defined as the net outside option for a borrower who is just indifferent between defaulting in period t
and period t + 1, conditional on not reaching the maximum required loan cycle. A higher ωt implies that
fewer borrowers will choose to default. As derived in Section 6 and shown in Equation 17, ωt is a function
of loan size Lt, the interest rate Rt, expected loan size growth λet+1, the discount factor δ, and the marginal
product of capital draw MPKi. It can therefore be calculated for each loan, conditional on assumptions
about λet+1, δ, and MPKi. I assume λet+1 = Lt

Lt−1
, δ = .9, and MPKi = 15%. Units for ωi are in terms of

dollars.
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Figure 20: Loan Ladder Optimization Results: Profits across Possible Loan Ladder Slope Values

This figure shows simulated profits for the lender across different values of the loan ladder slope, λ. It
depicts expected profits for the three initial loan sizes offered by the lender ($2.5, $5, and $10) and over
three different loan cycle horizons (10, 20, or 30 loans). It uses the baseline assumption that the probability
of a borrower hitting her maximum loan cycle in each period, p, is given by the value estimated in the
data (13.6%). Other assumptions about parameter values are given in Section 8.4. The loan ladder slope is
calculated as the proportional rate of loan growth. Units for profits are in terms of dollars.
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Figure 21: Loan Ladder Optimization Results: Alternative Values for p

(a) p = 20% (b) p = 30%

(c) p = 40%

This figure shows simulated profits for the lender across different values of the loan ladder slope, λ. It
depicts expected profits for the three initial loan sizes offered by the lender ($2.5, $5, and $10) and over
three different loan cycle horizons (10, 20, or 30 loans). Each panel uses an alternative assumption about
the probability of a borrower hitting her maximum loan cycle in each period, p. Other assumptions about
parameter values are given in Section 8.4. The loan ladder slope is calculated as the proportional rate of
loan growth. Units for profits are in terms of dollars.
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Figure 22: Initial Loan Size: Specification Checks - Risk Score Distribution by Reapplication Status

This figure shows the distribution of risk scores relative to the $10 loan threshold for individuals who were
rejected for the larger $10 initial loan, split by whether or not they chose to re-apply for the smaller $5 loan.
It provides visual evidence for the lack of selective borrowing among borrowers who were ineligible for the
larger loan. The risk score is an internally-calculated measure of borrower credit-worthiness. Borrowers with
a risk score above the $10 threshold received the larger $10 loan, whereas those below the threshold were
instead directed to reapply for the smaller $5 loan.
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Figure 23: Initial Loan Size: Specification Checks - Risk Score Manipulation Check

This figure shows the average number of first-time loans across risk score bins with a width of .01 units
(about 2% of the total range of risk scores during this period), as well as fitted values from a regression with
a third-order polynomial to control for the risk score, where the shape is allowed to vary on either side of
the threshold. It provides visual evidence for the lack of manipulation of the risk score (the running variable
in the regression discontinuity approach). The risk score is an internally-calculated measure of borrower
credit-worthiness. Borrowers with a risk score above the $10 threshold received the larger $10 loan, whereas
those below the threshold were instead directed to reapply for the smaller $5 loan.
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Figure 24: Initial Loan Size: Specification Checks - Comparison between Periods with and without Risk
Score Sorting

(a) First Stage (b) Reduced Form

This figure replicates the regression discontinuity analysis in an alternative later period when borrowers
were no longer sorted into initial loan sizes by their risk score. Panel A depicts the first-stage relationship
between the risk score and initial loan size during my sample period and the later period. Panel B shows
the reduced-form relationship between the risk score and default. Each panel plots average values of the
outcome variable across risk score bins with a width of .01 units (about 2% of the total range of risk scores
during this period), where the risk score is measured relative to the threshold. Each panel also includes
fitted values from a regression with a third-order polynomial to control for the risk score, where the shape is
allowed to vary on either side of the threshold. The risk score is an internally-calculated measure of borrower
credit-worthiness. The average default rate is calculated as the percentage of loans that reach 90 days past
due.
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Figure 25: Initial Loan Size: Specification Checks - Alternative Time Period with Risk Score Sorting

(a) First Stage (b) Reduced Form

This figure replicates the regression discontinuity analysis in an alternative later period when borrowers
were once again sorted into initial loan sizes by their risk score. Panel A depicts the first-stage relationship
between the risk score and initial loan size. Panel B shows the reduced-form relationship between the risk
score and default. Each panel plots average values of the outcome variable across risk score bins with a
width of .01 units, where the risk score is measured relative to the threshold. Each panel also includes
fitted values from a regression with a third-order polynomial to control for the risk score, where the shape is
allowed to vary on either side of the threshold. The risk score is an internally-calculated measure of borrower
credit-worthiness. The average default rate is calculated as the percentage of loans that reach 90 days past
due.
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Figure 26: Loan Ladder Progression: Specification Checks - Evidence on (Lack of) Selective Borrowing

This figure shows the probability of reapplying and taking out another loan, conditional on being upgraded
or remaining on the same level relative to the previous loan, by loan cycle. “Same” refers to borrowers who
stayed on the same loan size relative to their prior loan; “up” refers to borrowers who were upgraded to a
larger loan relative to their prior loan. Note that the scale starts at 90% and extends to 100%.
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Figure 27: Loan Ladder Progression: Specification Checks - Extended Sample

(a) Loan Ladder Slope (b) Default Rates

This figure replicates the difference-in-differences analysis for an extended period of time. It includes an
additional “off” period, in October 2015, during which borrowers in the treatment group were not upgraded
to a larger loan. Panel A depicts the ratio of the size of a borrower’s second loan to the size of her first loan,
split by treatment and control groups in the loan ladder progression quasi-experiment. Panel B depicts the
estimated difference in second-loan default rates between the treatment and control groups by loan cohort
week, along with the corresponding 95 percent confidence intervals. A loan is marked as defaulted when it
is 90 days past due.
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B Tables

Table 1: Loan Characteristics

Initial Repeat
Mean Median SD Min Max Mean Median SD Min Max

Loan Size 8.17 10.00 3.60 2.50 30.00 31.22 20.00 27.85 2.50 400.00
Fee Rate 0.08 0.08 0.02 0.05 0.13 0.11 0.11 0.02 0.05 0.17
Monthly Rate 0.13 0.12 0.05 0.07 0.28 0.12 0.12 0.03 0.02 0.28
APR 1.54 1.39 0.55 0.87 3.34 1.45 1.43 0.30 0.19 3.34
Repayment Freq. 7.00 7.00 0.00 7.00 7.00 7.74 7.00 3.07 7.00 28.00
Loan Term 19.47 21.00 2.89 14.00 28.00 27.85 28.00 8.25 14.00 168.00
Observations 85143 255867

This table displays summary statistics on key contract terms, split by initial and repeat loans. Loan size
is the amount disbursed, in dollars. The fee rate is calculated as the the flat fee charged on top of loan
principal, relative to the loan principal. The monthly rate is a conversion of the fee rate, taking into account
the loan term. The annual percent rate (APR) is the annualized version of the monthly rate. The repayment
frequency refers to the fixed number of days between loan installment due dates. The loan term refers to
the number of days between the disbursement date and the final loan installment due date.
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Table 2: Borrowers (Survey Sample)

.
Mean Std. Dev.

Age 33.71 8.06
Gender (Female = 1) 0.26 0.44
Urban 0.45 0.50
Edu: At Least Primary 1.00 0.06
Edu: At Least Secondary 0.95 0.22
Edu: University 0.52 0.50
Currently In School 0.34 0.47
Monthly Income 421.27 401.58
Sufficient Savings to Last 6+ Mo. w/o Income 0.24 0.43
Salaried Job 0.50 0.50
Owns a Business 0.54 0.50
Number of Businesses (cond.) 1.60 0.97
Access to Other Credit Sources 0.96 0.21
Number of Other Credit Sources (cond.) 1.82 1.04
Other Credit Sources: Bank 0.23 0.42
Other Credit Sources: Other Digital Credit 0.75 0.43
Reported Loan Use: Business Purposes 0.46 0.50
Reported Loan Use: Smoothing Purposes 0.71 0.46
Observations 4903

This table displays information on borrowers gathered from several third-party surveys, which were conducted
by the lender in order to learn more about its customer base. Age is in years. Gender gives the percentage of
the survey sample that is female. Urban is the percentage that report living in a city. The education-related
variables give the percentage that report completing at least primary school, at least secondary school, and
university. Currently in School refers to the percentage that report currently being enrolled in school either
full- or part-time. Monthly income is in dollars. Sufficient Savings refers to the percentage of borrowers who
report having enough savings to last at least six months in the event that they lost their primary source of
income. Salaried Job gives the perentage that report currently having a salaried job, while Owns a Business
is the percetange that report currently operating a self-owned business; note that these are not mutually
exclusive. Number of Businesses gives the average number of businesses owned by borrowers who report
owning at least one business. Access to Other Credit Sources is the percentage of borrowers who report
having access to at least one other credit source. Number of Other Credit Sources is the number of other
credit sources utilized by borrowers that have access to at least one other credit source. The Other Credit
Sources variables refer to the percentage of borrowers with access to specific other sources. The Reported
Loan Use variables give the percentage of borrowers who report using variables for the stated purpose; note
that borrowers could select more than one, so the categories are not mutually exclusive.
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Table 3: Borrowing Patterns (Borrower Level)

.
Mean Median Std Dev

Num. Loans 6.79 5.00 6.40
One Loan Only 0.24 0.00 0.43
Ten + Loans 0.23 0.00 0.42
Months b/w First and Last Loan 8.11 5.47 7.43
Loans per Month 3.25 1.11 9.72
Last Loan: Defaulted 0.50 1.00 0.50
Last Loan: Outstanding 0.14 0.00 0.34
Last Loan: Repaid, Reapplied, Rejected 0.20 0.00 0.40
Last Loan: Repaid, Not Reapplied Yet 0.16 0.00 0.37
Observations 85170

This table displays information at the borrower level on how borrowers utilize this lender. Number of Loans
refers to the total number of loans taken out by the borrower. One Loan Only gives the percentage of
borrowers who only take out one loan, whereas Ten + Loans refers to the percentage that have taken out at
least ten loans. Months b/w First and Last Loan is the total number of months between the disbursement
dates of the first and last loans. The Last Loan variables split the borrower pool by last loan status.

Table 4: Borrowing Patterns (Loan Level)

.
Mean Median Std Dev

Loan Cycle 3.93 3.00 3.11
Initial Loans 0.25 0.00 0.43
Days bw Loans 4.25 0.00 12.17
Days bw Loan Disbursements 19.16 14.00 21.37
Defaulted 0.09 0.00 0.29
Repaid Early (cond. on repaid) 0.82 1.00 0.39
Num. Days Repaid Early (cond. on early) 14.74 14.00 9.93
OTP Percentage 0.63 0.75 0.41
No Repayments Made (cond. on default) 0.76 1.00 0.43
Observations 341011

This table displays information at the loan level on how borrowers utilize this lender. Loan Cycle refers to the
number of loans the borrower has taken out up to this loan (including the current loan). Initial Loans gives
the percentage of loans that go to first-time borrowers. Days bw Loans gives the number of days between
the last repayment made on a borrower’s prior loan and the disbursement date of the current loan. Days bw
Loan Disbursements gives the number of days between the disbursement date of a borrower’s prior loan and
that of the current loan. Defaulted is the percentage of loans that reach 90 days past due. Repaid Early is
the percentage of repaid loans that are fully repaid prior to the final installment due date. Number of Days
Repaid Early gives the total number of days between the final repayment and the final installment due date,
conditional on a loan having been repaid early. The On-Time Payment (OTP) Percentage is calculated as
the percentage of loan installments that were successfully repaid on time. No Repayments Made gives the
percentage of defautled loans for which no repayments were ever made.
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Table 5: Initial Loan Size: First Stage Results

(1) (2) (3) (4) (5) (6)
VARIABLES Initial Size Initial Size Initial Size 10 Ind. 10 Ind. 10 Ind.

RS Threshold for 10 4.668*** 4.733*** 4.677*** 0.934*** 0.947*** 0.935***
(0.045) (0.043) (0.022) (0.009) (0.009) (0.004)

Observations 39,405 39,405 39,405 39,405 39,405 39,405
R-squared 0.954 0.954 0.954 0.954
Week FE YES YES YES YES YES YES
Global Polynomial YES YES
Global Linear YES YES
Local Linear YES YES

This table presents first-stage regressions of a measure of receiving the larger $10 loan on an indicator
of being above the risk score threshold for qualifying for the $10 loan. Columns 1-3 use loan size as the
dependent variable, while Columns 4-6 use a dummy for obtaining the larger loan. Columns 1 and 4 include
a third-order polynomial as controls for the risk score, fully interacted with an eligibility indicator. Columns
2 and 5 replace the polynomial with global linear controls. Columns 3 and 6 use local linear estimation. All
regressions also include loan cohort week fixed effects. Robust standard errors are shown in parantheses.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table 6: Test of Change in Risk Score Predictive Power

(1) (2) (3)
Below Threshold Above Threshold Combined

VARIABLES Default Rate Default Rate Default Rate

Risk Score -0.242*** -1.338*** -0.242***
(0.078) (0.069) (0.078)

Risk Score x Elig for 10 -1.096***
(0.106)

Elig for 10 0.088***
(0.008)

Observations 11,947 26,400 38,347
R-squared 0.001 0.026 0.018
Test of Slope Change
P-value 0
F-stat 107.3

This table presents results from regressions testing for a difference in the slope of the relationship between risk
score and default rates above and below the risk score threshold for qualifying for the $10 loan. In Columns
1 and 2, an indicator of loan default is regressed on the risk score (measured relative to the threshold) for the
sample of borrowers below and above the $10 risk score threshold, respectively. Column 3 uses the full set
of loans and regresses an indicator of loan default on risk score, an indicator of being above the threshold,
and their interaction. An F-test is presented to test for a significant difference in the slope on either side of
the threshold. Robust standard errors are shown in parantheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 7: Initial Loan Size: RD Results, Default Rates

(1) (2) (3) (4) (5) (6)
VARIABLES Loan Default Loan Default Loan Default Borrower Default Borrower Default Borrower Default

Initial Loan Size 0.077*** 0.082*** 0.061*** 0.011 0.014 0.009
(0.013) (0.011) (0.013) (0.011) (0.010) (0.015)

Observations 38,347 38,347 38,347 35,930 35,930 35,930
R-squared 0.021 0.020 0.027 0.026
Week FE YES YES YES YES YES YES
Global Polynomial YES YES
Global Linear YES YES
Local Linear YES YES

This table presents two-stage least squares regressions measuring the impact of doubling the initial loan size
on the probability of default by new borrowers. I instrument for initial loan size using the maximum eligible
loan, which is $10 and $5 for borrowers above and below the risk score threshold for qualifying for the $10
loan, respectively. I also include loan cohort week fixed effects. Columns 1-3 use loan-level default on the
first loan as an outcome variable, while Columns 4-6 use borrower-level default instead. Columns 1 and 4
correspond to the global polynomial risk control specification, Column 2 and 5 utilize global linear controls,
and Column 3 and 6 feature local linear estimation. A loan is marked as defaulted when it reaches 90 days
past due. A borrower is marked as having defaulted eventually if she defaults on any loan; in practice,
because the lender practices full exclusion of defaulters, this equates to a borrower who defaults on her last
loan with the lender. Robust standard errors are shown in parantheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table 8: Initial Loan Size: IV Results, Other Longer Term Credit Outcomes

(1) (2) (3) (4) (5) (6)
VARIABLES # of Loans # of Loans # of Loans Last Loan Size Last Loan Size Last Loan Size

Initial Loan Size -1.390*** -0.871*** -0.913*** -2.530 -2.468 1.336
(0.268) (0.247) (0.197) (1.921) (1.789) (1.331)

Observations 38,347 38,347 38,347 35,930 35,930 35,930
R-squared 0.043 0.041 0.056 0.052
Week FE YES YES YES YES YES YES
Global Polynomial YES YES
Global Linear YES YES
Local Linear YES YES

This table presents two-stage least squares regressions measuring the impact of doubling the initial loan
size on other longer-term credit outcomes. I instrument for initial loan size using the maximum eligible
loan, which is $10 and $5 for borrowers above and below the risk score threshold for qualifying for the $10
loan, respectively. I also include loan cohort week fixed effects. Columns 1-3 use number of loans as an
outcome variable, while Columns 4-6 use the last loan size instead. Columns 1 and 4 correspond to the
global polynomial risk control specification, Column 2 and 5 utilize global linear controls, and Column 3
and 6 feature local linear estimation. The number of loans refers to the total number of loans taken out by
a borrower from this lender. The last loan size is the amount disbursed on the final loan recorded for each
borrower. Robust standard errors are shown in parantheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

75



Table 9: Loan Ladder Progression: DD Results

(1) (2) (3) (4)
VARIABLES Default Rate Borrower Default Rate Number of Loans Last Loan Size

Treatment * On -0.029*** 0.086*** -0.307** 13.565***
(0.009) (0.019) (0.142) (1.508)

Treatment 0.053*** -0.086*** -0.904*** -31.271***
(0.007) (0.012) (0.122) (1.696)

On 0.010* -0.053*** 0.403** -0.655
(0.005) (0.014) (0.161) (1.525)

Risk Score -0.433*** -0.876*** 22.451*** 206.377***
(0.040) (0.084) (1.611) (18.439)

Number of Loans -0.028***
(0.001)

Weeks Between Loans -0.001 -0.053*** 0.246*** 0.117
(0.001) (0.002) (0.023) (0.272)

Constant 0.015** 1.059*** 9.404*** 68.527***
(0.007) (0.116) (1.447) (10.351)

Observations 17,229 17,229 17,229 17,229
R-squared 0.018 0.190 0.055 0.080
Week of First Loan FE YES YES YES YES

This table presents difference-in-differences regression estimates of the impact of an exogenous doubling in
loan size (relative to the previous loan) to a second-time borrower on various outcomes. It uses the standard
DD specification. Treatment is an indicator of being in the treatment group, which is composed of borrowers
with an on-time payment percentage on their prior loan of between (P − 25)% and P%, such that whether
or not they are upgraded on their second loan depends on when they apply. “On” is an indicator of a
borrower applying for her second loan during the “on” periods, when the upgrading “shock” for treatment
borrowers is in effect. Column 1 uses an indicator of default on the second loan as an outcome variable,
Column 2 uses an indicator of whether a borrower defaults eventually, Column 3 uses the number of loans,
and Column 4 uses the last loan size. All columns incorporate additional controls for borrower risk score, the
speed at which the second loan is taken out, borrower cohort fixed effects, and the number of loans (where
applicable). A loan is marked as defaulted when it reaches 90 days past due. A borrower is marked as having
defaulted eventually if she defaults on any loan; in practice, because the lender practices full exclusion of
defaulters, this equates to a borrower who defaults on her last loan with the lender. The number of loans
refers to the total number of loans taken out by a borrower from this lender. The last loan size is the amount
disbursed on the final loan recorded for each borrower. Robust standard errors are shown in parantheses.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 10: Loan Ladder Progression: DD Results, Loan-Level Default Rate (Split by Loan Turnover Rate)

(1) (2) (3)
VARIABLES Below Median Above Median Interaction

Treatment * On -0.048*** -0.004 0.002
(0.013) (0.015) (0.014)

Below Median * Treatment * On -0.054***
(0.019)

Treatment 0.068*** 0.035*** 0.031***
(0.009) (0.009) (0.008)

Below Median * Treatment 0.039***
(0.012)

On -0.002 0.014 0.007
(0.009) (0.009) (0.007)

Below Median * On 0.001
(0.006)

Risk Score -0.418*** -0.455*** -0.431***
(0.042) (0.061) (0.035)

Constant 0.005 0.005 0.008
(0.014) (0.009) (0.007)

Observations 11,806 5,423 17,229
R-squared 0.021 0.022 0.019
Week of First Loan FE YES YES YES

This table presents difference-in-differences regression estimates of the impact of an exogenous doubling in
loan size (relative to the previous loan) to a second-time borrower on the probability of default, where the
sample is split according to the loan turnover rate. The loan turnover rate is measured as the number of
days between the final repayment on a borrower’s first loan and the disbursement date of her second loan. I
split borrowers into two groups based on whether they are below (“fast turnover”) or above (“slow turnover”)
the median of one day in this sample. Columns 1 and 2 estimate the model separately for the fast and slow
turnover groups, respectively, including controls for the risk score and the week in which a borrower took
out her first loan. Column 3 includes a full set of interactions with a binary indicator for having taken out a
second loan at least as fast as the median borrower, again including the additional controls. Robust standard
errors are shown in parantheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 11: Distribution of Net Outside Option (ωi)

(a) Overall

10 Quantiles of MPK Mean SD
5-7 -15.12 20.12
7-9 -11.15 16.11
9-11 -9.25 15.23
11-13 -7.58 14.74
13-15 -4.91 12.55
15-17 -2.12 9.16
17-19 0.03 4.97
19-21 0.76 3.26
21-23 1.21 3.07
23-25 1.48 3.07
Total -4.66 10.23

(b) By Default Status

10 Quantiles of MPK Mean SD
Defaulters Non-Defaulters Defaulters Non-Defaulters

5-7 -11.88 -16.67 13.15 15.21
7-9 -7.18 -11.73 9.91 11.68
9-11 -4.32 -9.02 8.73 10.43
11-13 -2.25 -7.01 8.16 9.79
13-15 -0.78 -4.62 7.06 8.46
15-17 0.14 -2.56 5.61 6.67
17-19 0.90 -1.14 3.57 4.31
19-21 2.14 0.17 2.69 3.27
21-23 3.14 1.11 2.94 3.40
23-25 3.65 1.63 3.17 3.61
Total -1.65 -4.98 8.68 10.36

(c) By Default Status (First-Time vs Repeat Borrowers)

10 Quantiles of MPK Mean SD
D (RB) N-D (RB) D (FTB) N-D (FTB) D (RB) N-D (RB) D (FTB) N-D (FTB)

5-7 -18.65 -20.60 -0.25 -1.03 11.94 14.45 3.36 3.87
7-9 -12.33 -14.93 1.71 0.96 8.71 10.78 3.43 3.85
9-11 -8.81 -11.98 3.43 2.61 7.57 9.44 3.76 4.15
11-13 -6.35 -9.78 4.82 3.99 7.10 8.78 3.95 4.31
13-15 -4.40 -7.00 5.43 4.78 6.17 7.67 2.98 3.33
15-17 -2.74 -4.41 5.15 4.70 4.96 6.14 1.96 2.22
17-19 -0.90 -2.35 4.00 3.66 3.12 3.90 1.63 1.79
19-21 1.18 -0.65 3.77 3.43 2.69 3.03 1.74 1.86
21-23 2.66 0.49 3.97 3.58 3.30 3.39 1.92 2.02
23-25 3.36 1.09 4.14 3.74 3.63 3.71 2.07 2.13
Total -4.70 -7.01 3.61 3.05 9.35 10.53 3.25 3.55

This table reports estimates of the parameters characterizing the distribution of the net outside option ωi.
I use a censored regression model to estimate the mean and variance of net outside options within MPKi

buckets, assuming that, conditional on the MPKi draw, the net outside option is normally distributed:
wi|MPKi ∼ N(µ, σ2). Panel A reports overall estimates from a model with no covariates. Panels B and C
explore heterogeneity by default status and by both default status and first-time versus repeat borrowers,
respectively. Defaulters are defined as borrowers who default eventually during the sample period, whereas
non-defaulters have not yet defaulted. A borrower defaults when a loan reaches 90 days past due. First-time
borrowers are borrowers who have only taken out one loan, while repeat borrowers have taken out more than
one loan. Units are in terms of dollars.
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Table 12: Lender Optimization Results

(a) Baseline (p = 13.6%)

Loan Size Optimal Lambda Initial Profit Max Profit (10) Max Profit (20) Max Profit (30)
2.5 2.00 -0.02 516.13 516.13 516.13
5 1.72 -0.03 578.11 578.11 578.11
10 1.49 -0.09 658.63 658.63 658.63
Total 1.74 -0.05 584.29 584.29 584.29

(b) p = 20%

Loan Size Optimal Lambda Initial Profit Max Profit (10) Max Profit (20) Max Profit (30)
2.5 2.00 -0.02 236.26 236.26 236.26
5 1.83 -0.04 268.40 268.40 268.40
10 1.54 -0.09 305.35 305.35 305.35
Total 1.79 -0.05 270.00 270.00 270.00

(c) p = 30%

Loan Size Optimal Lambda Initial Profit Max Profit (10) Max Profit (20) Max Profit (30)
2.5 1.65 -0.02 62.59 62.59 62.59
5 1.49 -0.04 77.14 77.14 77.14
10 1.34 -0.09 95.81 95.81 95.81
Total 1.49 -0.05 78.51 78.51 78.51

(d) p = 40%

Loan Size Optimal Lambda Initial Profit Max Profit (10) Max Profit (20) Max Profit (30)
2.5 1.53 -0.02 25.25 25.25 25.25
5 1.41 -0.04 34.63 34.63 34.63
10 1.29 -0.10 46.47 46.47 46.47
Total 1.41 -0.05 35.45 35.45 35.45

This table shows the lender profit simulation results. It gives the optimal loan ladder slope, λ, corresponding
to each of the three initial loan sizes offered by the lender ($2.5, $5, and $10). It also reports the corresponding
profit on the initial loan and maximized profit over three different potential loan cycle horizons (10, 20, or
30 loans). Panel A uses the baseline assumption that the probability of a borrower hitting her maximum
loan cycle in each period, p, is given by the value estimated in the data (13.6%). Panels B-D use alternative
values for p. Other assumptions about parameter values are given in Section 8.4. The loan ladder slope is
defined as the rate of proportional loan growth. Units for profits are in terms of dollars.
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Table 13: Initial Loan Size: Specification Checks - First Stage, No Sorting Period

(1) (2) (3) (4) (5) (6)
VARIABLES Initial Size Initial Size Initial Size 10 Ind. 10 Ind. 10 Ind.

RS Threshold for 10 0.274*** 0.379*** 0.208*** 0.044*** 0.056*** 0.012
(0.034) (0.029) (0.044) (0.006) (0.005) (0.009)

Observations 48,550 48,550 48,566 47,916 47,916 47,916
R-squared 0.028 0.028 0.021 0.021
Week FE YES YES YES YES YES YES
Global Polynomial YES YES
Global Linear YES YES
Local Linear YES YES

This table presents first-stage regression estimates for the relationship between the risk score and initial
loan size for an alternative later period when borrowers were no longer sorted into initial loan sizes by their
risk score. It gives the impact of a measure of receiving the larger $10 loan on an indicator of being above
the original risk score threshold, which was no longer being used to split borrowers into different initial loan
sizes. Columns 1-3 use loan size as the dependent variable, while Columns 4-6 use a dummy for obtaining the
larger loan. Columns 1 and 4 include a third-order polynomial as controls for the risk score, fully interacted
with an eligibility indicator. Columns 2 and 5 replace the polynomial with global linear controls. Columns
3 and 6 use local linear estimation. Regressions also include loan cohort week fixed effects. Robust standard
errors are shown in parantheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table 14: Initial Loan Size: Specification Checks - First Stage, Alternative Sorting Period

(1) (2) (3) (4) (5) (6)
VARIABLES Initial Size Initial Size Initial Size 10 Ind. 10 Ind. 10 Ind.

RS Threshold for 10 0.041*** 0.042*** 0.028*** 0.802*** 0.832*** 0.541***
(0.003) (0.001) (0.001) (0.046) (0.022) (0.022)

Observations 21,959 21,960 21,960 21,960 21,959 21,960
R-squared 0.570 0.568 0.621 0.620
Week FE YES YES YES YES YES YES
Global Polynomial YES YES
Global Linear YES YES
Local Linear YES YES

This table presents first-stage regression estimates for the relationship between the risk score and initial
loan size for an alternative later period when borrowers were once again sorted into initial loan sizes by
their risk score. It gives the impact of a measure of receiving the larger $10 loan on an indicator of being
above the risk score threshold for qualifying for the $10 loan. Columns 1-3 use loan size as the dependent
variable, while Columns 4-6 use a dummy for obtaining the larger loan. Columns 1 and 4 include a third-
order polynomial as controls for the risk score fully interacted with an eligibility indicator. Columns 2 and
5 replace the polynomial with global linear controls. Columns 3 and 6 use local linear estimation. All
regressions also include loan cohort week fixed effects. Robust standard errors are shown in parantheses.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 15: Initial Loan Size: Specification Checks - RD Results, Alternative Sorting Period

(1) (2) (3)
VARIABLES Defaulted Defaulted Defaulted

Initial Loan Size 0.087*** 0.082*** 0.071***
(0.025) (0.009) (0.026)

Observations 21,960 21,960 21,960
R-squared 0.024 0.024
Week FE YES YES YES
Global Polynomial YES
Global Linear YES
Local Linear YES

This table presents two-stage least squares regressions measuring the impact of doubling the initial loan size
on the probability of default by new borrowers, for an alternative later period when borrowers were once
again sorted into initial loan sizes by their risk score. I instrument for initial loan size using the maximum
eligible loan, which is $10 and $5 for borrowers above and below the risk score threshold for qualifying for
the $10 loan, respectively. I also include loan cohort week fixed effects. Column 1corresponds to the global
polynomial risk control specification, Column 2 utilizes global linear controls, and Column 3 features local
linear estimation. A loan is marked as defaulted when it reaches 90 days past due. Robust standard errors
are shown in parantheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 16: Loan Ladder Progression: Specification Checks - DD Results, Extended Sample

(1) (2)
VARIABLES Default Rate Borrower Default Rate

Treatment * On -0.029*** 0.095***
(0.009) (0.017)

Treatment 0.053*** -0.061***
(0.007) (0.011)

On 0.010* -0.065***
(0.005) (0.016)

Risk Score -0.433*** -1.499***
(0.040) (0.083)

Weeks Between Loans -0.001 -0.060***
(0.001) (0.002)

Constant 0.015** 0.798***
(0.007) (0.121)

Observations 17,229 17,229
R-squared 0.018 0.077
Week of First Loan FE YES YES

This table presents difference-in-differences regression estimates of the impact of an exogenous doubling
in loan size (relative to the previous loan) to a second-time borrower on the probability of default, for
an extended sample period (which includes an additional “off” time period). It uses the standard DD
specification. Treatment is an indicator of being in the treatment group, which is composed of borrowers
with an on-time payment percentage on their prior loan of between (P −25)% and P%, such that whether or
not they are upgraded on their second loan depends on when they apply. “On” is an indicator of a borrower
applying for her second loan during the “on” periods, when the upgrading “shock” for treatment borrowers
is in effect. Column 1 uses an indicator of default on the second loan as an outcome variable and Column 2
uses an indicator of whether a borrower defaults eventually. Both columns incorporate additional controls
for borrower risk score, the speed at which the second loan is taken out, and borrower cohort fixed effects.
A loan is marked as defaulted when it reaches 90 days past due. A borrower is marked as having defaulted
eventually if she defaults on any loan; in practice, because the lender practices full exclusion of defaulters,
this equates to a borrower who defaults on her last loan with the lender. Robust standard errors are shown
in parantheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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